精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x-
1x+1
,g(x)=x2-2ax+4,若?x1∈[0,1]?x[1,2],使f(x1)≥g(x2),则实数a的取值范围是
 
分析:先用导数研究出函数f(x)的单调性,得出其在区间[0,1]上的值域,f(x)的最小值是f(0)=-1.然后将题中“若?x1∈[0,1]?x[1,2],使f(x1)≥g(x2)”转化为f(x1)的最小值大于或等于g(x2)在区间[1,2]能够成立,说明g(x2)≤-1在区间[1,2]上有解,注意到自变量的正数特征,变形为 x2+
5
x2
≤2a
,在区间[1,2]上至少有一个实数解,即x2+
5
x2
在区间[1,2]上的最小值小于或等于2a,问题迎刃解.
解答:解:函数f(x)=x-
1
x+1
的导数f/  (x)=1+
1
(x+1)2
>0
,函数f(x)在[0,1]上为增函数,
因此若?x1∈[0,1],则f(0)=-1≤f(x1)≤f(1)=
1
2

原问题转化为?x2∈[1,2],使f(0)=-1≥g(x2),
即-1≥x22-2ax2+4,在区间[1,2]上能够成立
变形为 x2+
5
x2
≤2a
,在区间[1,2]上至少有一个实数解
x2+
5
x2
∈[
9
2
,6]
,所以
9
2
≤2a,可得a≥
9
4

故答案为[
9
4
,+∞)
点评:本题以函数为载体,既考查了不等式恒成立的问题,又考查了不等式解集非空的问题.采用变量分离避免讨论,解化运算,是解决本题的捷径.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案