精英家教网 > 高中数学 > 题目详情

【题目】已知,函数是自然对数的底数).

)若,证明:曲线没有经过点的切线;

)若函数在其定义域上不单调,求的取值范围;

【答案】(Ⅰ)见解析(Ⅱ)

【解析】

)假设存在切线经过,设切点为,利用切线方程推出矛盾得到证明.

)函数在其定义域上不单调,等价于有变号零点,取导数为0,参数分离,设新函数利用函数的单调性求取值范围.

解:(Ⅰ)因为,所以,此时

设曲线在点处的切线经过点

则曲线在点处的切线

所以 化简得:

,则

所以当时,为减函数,

时, 为增函数,

所以,所以无解

所以曲线的切线都不经过点

(Ⅱ)函数的定义域为,因为

所以在定义域上不单调,等价于有变号零点,

,得,令

因为,令

所以上的减函数,又,故1的唯一零点,

递增;

递减;

故当时,取得极大值且为最大值,所以,即的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)用表示中的最大值,设函数,讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4 — 4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为).

1)分别写出直线的普通方程与曲线的直角坐标方程;

2)已知点,直线与曲线相交于两点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】疫情期间,一同学通过网络平台听网课,在家坚持学习.某天上午安排了四节网课,分别是数学,语文,政治,地理,下午安排了三节,分别是英语,历史,体育.现在,他准备在上午下午的课程中各任选一节进行打卡,则选中的两节课中至少有一节文综学科(政治、历史、地理)课程的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前有声书正受着越来越多人的喜爱.某有声书公司为了解用户使用情况,随机选取了名用户,统计出年龄分布和用户付费金额(金额为整数)情况如下图.

有声书公司将付费高于元的用户定义为“爱付费用户”,将年龄在岁及以下的用户定义为“年轻用户”.已知抽取的样本中有的“年轻用户”是“爱付费用户”.

(1)完成下面的列联表,并据此资料,能否有的把握认为用户“爱付费”与其为“年轻用户”有关?

爱付费用户

不爱付费用户

合计

年轻用户

非年轻用户

合计

(2)若公司采用分层抽样方法从“爱付费用户”中随机选取人,再从这人中随机抽取人进行访谈,求抽取的人恰好都是“年轻用户”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在极坐标系下,已知圆O和直线

1求圆O和直线l的直角坐标方程;

2时,求直线l与圆O公共点的一个极坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当 时,设,讨论的导函数的单调性;

(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为圆上一动点,轴,轴上的射影分别为点,动点满足,记动点的轨迹为曲线.

(1)求曲线的方程;

(2)过点的直线与曲线交于两点,判断以为直径的圆是否过定点?求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若恒成立,求实数的最大值

(2)在(1)成立的条件下,正实数满足,证明:.

查看答案和解析>>

同步练习册答案