【题目】已知
为圆
上一动点,
在
轴,
轴上的射影分别为点
,
,动点
满足
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
的直线与曲线
交于
,
两点,判断以
为直径的圆是否过定点?求出定点的坐标;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】设抛物线
的焦点为
,准线为
,
为抛物线
过焦点
的弦,已知以
为直径的圆与
相切于点
.
(1)求
的值及圆的方程;
(2)设
为
上任意一点,过点
作
的切线,切点为
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴,取相同长度单位建立极坐标系,直线
的极坐标方程为
.
(Ⅰ)求曲线
和直线
的直角坐标方程;
(Ⅱ)直线
与
轴交点为
,经过点
的直线与曲线
交于
,
两点,证明:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某公司生产线生产的某种产品中抽取1000件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:
![]()
(1)求这1000件产品质量指标的样本平均数
和样本方差
(同一组中的数据用该组区间的中点值作代表);
(2)由直方图可以认为,这种产品的质量指标值
服从正态分布
,其中
近似为样本平均数
近似为样本方差
.
(i)利用该正态分布,求
;
(ⅱ)已知每件该产品的生产成本为10元,每件合格品(质量指标值
)的定价为16元;若为次品(质量指标值
),除了全额退款外且每件次品还须赔付客户48元.若该公司卖出10件这种产品,记
表示这件产品的利润,求
.
附:
,若
,则
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种规格的矩形瓷砖
根据长期检测结果,各厂生产的每片瓷砖质量
都服从正态分布
,并把质量在
之外的瓷砖作为废品直接回炉处理,剩下的称为正品.
(Ⅰ)从甲陶瓷厂生产的该规格瓷砖中抽取10片进行检查,求至少有1片是废品的概率;
(Ⅱ)若规定该规格的每片正品瓷砖的“尺寸误差”计算方式为:设矩形瓷砖的长与宽分别为
、
,则“尺寸误差”
为
,按行业生产标准,其中“优等”、“一级”、“合格”瓷砖的“尺寸误差”范围分别是
,
、
,
、
,
(正品瓷砖中没有“尺寸误差”大于
的瓷砖),每片价格分别为7.5元、6.5元、5.0元.现分别从甲、乙两厂生产的该规格的正品瓷砖中随机抽取100片瓷砖,相应的“尺寸误差”组成的样本数据如下:
尺寸误差 | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
频数 | 10 | 30 | 30 | 5 | 10 | 5 | 10 |
(甲厂瓷砖的“尺寸误差”频数表)用这个样本的频率分布估计总体分布,将频率视为概率.
![]()
(ⅰ)记甲厂该种规格的2片正品瓷砖卖出的钱数为
(元
,求
的分布列及数学期望
.
(ⅱ)由如图可知,乙厂生产的该规格的正品瓷砖只有“优等”、“一级”两种,求5片该规格的正品瓷砖卖出的钱数不少于36元的概率.
附:若随机变量
服从正态分布
,则
;
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0),左、右焦点分别为F1(﹣1,0),F2(1,0),椭圆离心率为
,过点P(4,0)的直线l与椭圆C相交于A、B两点(A在B的左侧).
(1)求椭圆C的方程;
(2)若B是AP的中点,求直线l的方程;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com