【题目】已知椭圆C:
(a>b>0),左、右焦点分别为F1(﹣1,0),F2(1,0),椭圆离心率为
,过点P(4,0)的直线l与椭圆C相交于A、B两点(A在B的左侧).
(1)求椭圆C的方程;
(2)若B是AP的中点,求直线l的方程;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
科目:高中数学 来源: 题型:
【题目】已知
为圆
上一动点,
在
轴,
轴上的射影分别为点
,
,动点
满足
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
的直线与曲线
交于
,
两点,判断以
为直径的圆是否过定点?求出定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
为参数且
,
,
,曲线
的参数方程为
为参数),以
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的普通方程及
的直角坐标方程;
(2)若曲线
与曲线
分别交于点
,
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
为参数且
,
,
,曲线
的参数方程为
为参数),以
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的普通方程及
的直角坐标方程;
(2)若曲线
与曲线
分别交于点
,
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程为
.
(1)若
,求直线
以及曲线
的直角坐标方程;
(2)若直线
与曲线
交于
两点,且
,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设抛物线
的准线
与
轴交于椭圆
的右焦点
为
的左焦点.椭圆的离心率为
,抛物线
与椭圆
交于
轴上方一点
,连接
并延长其交
于点
,
为
上一动点,且在
之间移动.
![]()
(1)当
取最小值时,求
和
的方程;
(2)若
的边长恰好是三个连续的自然数,当
面积取最大值时,求面积最大值以及此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
(1)若曲线
在x=1处的切线为y=2x-3,求实教a,b的值.
(2)若a=0,且
-2对一切正实数x值成立,求实数b的取值范围.
(3)若b=4,求函数
的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.卷八中第33问:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )
![]()
A.28B.56C.84D.120
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com