精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线和直线的直角坐标方程;

(Ⅱ)直线轴交点为,经过点的直线与曲线交于两点,证明:为定值.

【答案】(Ⅰ)曲线.的直角坐标方程为.(Ⅱ)见证明

【解析】

(Ⅰ)根据曲线的参数方程,平方相加,即可求得曲线普通方程,再根据极坐标方程与直角坐标方程的互化公式,即可得到直线的直角坐标方程.

(Ⅱ)设过点的直线方程为为参数),代入曲线的普通方程,根据参数的几何意义,即可求解.

(Ⅰ)由题意,可得

化简得曲线.

直线的极坐标方程展开为

的直角坐标方程为.

(Ⅱ)显然的坐标为,不妨设过点的直线方程为为参数),

代入

所以为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场春节期间推出一项优惠活动,活动规则如下:消费额每满300元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在区域Ⅰ返券60元;停在区域Ⅱ返券30元;停在区域Ⅲ不返券.例如:消费600元,可抽奖2次,所获得的返券金额是两次金额之和.

(Ⅰ)若某位顾客消费300元,求返券金额不低于30元的概率;

(Ⅱ)若某位顾客恰好消费600元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆经过点,且点与椭圆的左、右顶点连线的斜率之积为.

1)求椭圆的方程;

2)若椭圆上存在两点,使得的垂心(三角形三条高的交点)恰为坐标原点,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的方程4个不同的实数根,则k的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线,其相关指数,给出下列结论,其中正确的个数是( )

①公共图书馆业机构数与年份的正相关性较强

②公共图书馆业机构数平均每年增加13.743个

③可预测 2019 年公共图书馆业机构数约为3192个

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有道数学题,其中道选择题, 道填空题,小明从中任取道题,求

1)所取的道题都是选择题的概率

2)所取的道题不是同一种题型的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在它们的交点处具有相同的切线.

1)求的解析式;

2)若函数有两个极值点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为F.

1)求点F的坐标和椭圆C的离心率;

2)直线过点F,且与椭圆C交于PQ两点,如果点P关于x轴的对称点为,判断直线是否经过x轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动圆过定点,且在轴上截得的弦的长为4.

1)若动圆圆心的轨迹为曲线,求曲线的方程;

2)在曲线的对称轴上是否存在点,使过点的直线与曲线的交点满足为定值?若存在,求出点的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案