ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄÊ×ÏîΪa1=2£¬¹«±ÈΪq£¨qΪÕýÕûÊý£©£¬ÇÒÂú×ã3a3ÊÇ8a1Óëa5µÄµÈ²îÖÐÏÊýÁÐ{bn}Âú×ã2n2-£¨t+bn£©n+
3
2
bn=0£¨t¡ÊR£¬n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÊÔÈ·¶¨tµÄÖµ£¬Ê¹µÃÊýÁÐ{bn}ΪµÈ²îÊýÁУ»
£¨3£©µ±{bn}ΪµÈ²îÊýÁÐʱ£¬¶ÔÈÎÒâÕýÕûÊýk£¬ÔÚakÓëak+1Ö®¼ä²åÈë2¹²bk¸ö£¬µÃµ½Ò»¸öÐÂÊýÁÐ{cn}£®ÉèTnÊÇÊýÁÐ{cn}µÄÇ°nÏîºÍ£¬ÊÔÇóÂú×ãTn=2cm+1µÄËùÓÐÕýÕûÊýmµÄÖµ£®
£¨1£©ÒòΪ6a3=8a1+a5£¬ËùÒÔ6q2=8+q4£¬
½âµÃq2=4»òq2=2£¨Éᣩ£¬Ôòq=2
ÓÖa1=2£¬ËùÒÔan=2n
£¨2£©ÓÉ2n2-£¨t+bn£©n+
3
2
bn=0£¬µÃbn=
2n2-tn
n-
3
2
£¬
ËùÒÔb1=2t-4£¬b2=16-4t£¬b3=12-2t£¬
ÔòÓÉb1+b3=2b2£¬µÃt=3
¶øµ±t=3ʱ£¬bn=2n£¬ÓÉbn+1-bn=2£¨³£Êý£©Öª´ËʱÊýÁÐ{bn}ΪµÈ²îÊýÁУ»
£¨3£©ÒòΪc1=c2=c3=2£¬Ò×Öªm=1²»ºÏÌâÒ⣬m=2ÊʺÏÌâÒâ
µ±m¡Ý3ʱ£¬ÈôºóÌíÈëµÄÊý2µÈÓÚcm+1¸ö£¬ÔòÒ»¶¨²»ÊʺÏÌâÒ⣬
´Ó¶øcm+1±ØÊÇÊýÁÐ{an}ÖеÄijһÏîak+1£¬
Ôò£¨2+22+23+¡­+2k£©+2£¨b1+b2+b3+¡­+bk£©=2¡Á2k+1£¬
¼´2¡Á(2k-1)+
(2+2k)k
2
¡Á2=2¡Á2k+1
£¬¼´2k+1-2k2-2k+2=0£®
Ò²¾ÍÊÇ2k=k2+k-1£¬
Ò×Ö¤k=1£¬2£¬3£¬4²»ÊǸ÷½³ÌµÄ½â£¬¶øµ±n¡Ý5ʱ£¬2n£¾n2+n-1³ÉÁ¢£¬Ö¤Ã÷ÈçÏ£º
1¡ãµ±n=5ʱ£¬25=32£¬k2+k-1=29£¬×ó±ß£¾Óұ߳ÉÁ¢£»
2¡ã¼ÙÉèn=kʱ£¬2k£¾k2+k-1³ÉÁ¢£¬
µ±n=k+1ʱ£¬2k+1£¾2k2+2k-2=£¨k+1£©2+£¨k+1£©-1+k2-k-3
¡Ý£¨k+1£©2+£¨k+1£©-1+5k-k-3=£¨k+1£©2+£¨k+1£©-1+k+3£¨k-1£©£¾£¨k+1£©2+£¨k+1£©-1
Õâ¾ÍÊÇ˵£¬µ±n=k+1ʱ£¬½áÂÛ³ÉÁ¢£®
ÓÉ1¡ã£¬2¡ã¿ÉÖª£¬2n£¾n2+n-1£¨n¡Ý5£©Ê±ºã³ÉÁ¢£¬¹Ê2k=k2+k-1ÎÞÕýÕûÊý½â£®
×ÛÉÏ¿ÉÖª£¬Âú×ãÌâÒâµÄÕýÕûÊý½öÓÐm=2£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

5¡¢ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬¹«±Èq¡Ù1£¬ÈôS5=3a4+1£¬S4=2a3+1£¬ÔòqµÈÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬a2=9£¬a5=243£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Áîbn=log3an£¬ÇóÊýÁÐ{
1bnbn+1
}µÄÇ°nÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ±ÈÊýÁÐ{an}Âú×ãa1•a7=3a3a4£¬ÔòÊýÁÐ{an}µÄ¹«±Èq=
3
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖÐa1=64£¬¹«±Èq¡Ù1£¬ÇÒa2£¬a3£¬a4·Ö±ðΪijµÈ²îÊýÁеĵÚ5ÏµÚ3ÏµÚ2Ï
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=log2an£¬ÇóÊýÁÐ{|bn|}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬a3+a6=36£¬a4+a7=18£®Èôan=
12
£¬Ôòn=
9
9
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸