精英家教网 > 高中数学 > 题目详情

【题目】如图,在△ABC中,
(1)用 表示
(2)若 ,求证:
(3)若 ,求 的值.

【答案】
(1)解:因为 ,所以

所以


(2)证明:因为 ,所以 ,即

,又因为

所以 ,即

所以 ,所以


(3)解:因为 ,所以

,因此

同理 ,又 ,所以

因为 ,所以

又因为 ,所以 ,所以

由①②得


【解析】(1)根据向量的加减的几何意义即可求出,(2)根据向量的模和向量的垂直的条件即可判断,(3)根据向量的加减的几何意义和向量的数量积的运算即可求出
【考点精析】利用平面向量的基本定理及其意义对题目进行判断即可得到答案,需要熟知如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.

(1)证明:DN∥平面PMB;
(2)证明:平面PMB⊥平面PAD;
(3)求点A到平面PMB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆两焦点 ,并且经过点
(1)求椭圆的方程;
(2)若过点A(0,2)的直线l与椭圆交于不同的两点M、N(M在A、N之间),试求△OAM与△OAN面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥V﹣ABC中,VA=VB=AC=BC=2,AB= ,VC=1.
(Ⅰ)证明:AB⊥VC;
(Ⅱ)求三棱锥V﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)= 是奇函数.
(1)确定y=g(x),y=f(x)的解析式;
(2)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;
(3)若对任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个函数f(x)=log4(a )(a≠0),g(x)=log4(4x+1)﹣ 的图象有且只有一个公共点,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ 是奇函数.
(1)若点Q(1,3)在函数f(x)的图象上,求函数f(x)的解析式;
(2)写出函数f(x)的单调区间(不要解答过程,只写结果);
(3)设点A(t,0),B(t+1,0)(t∈R),点P在f(x)的图象上,且△ABP的面积为2,若这样的点P恰好有4个,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥O﹣ABCD中,∠BAD=120°,OA⊥平面ABCD,E为OD的中点,OA=AC= AD=2,AC平分∠BAD.

(1)求证:CE∥平面OAB;
(2)求四面体OACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知n次多项式 ,在求fn(x0)值的时候,不同的算法需要进行的运算次数是不同的.例如计算 (k=2,3,4,…,n)的值需要k﹣1次乘法运算,按这种算法进行计算f3(x0)的值共需要9次运算(6次乘法运算,3次加法运算).现按如图所示的框图进行运算,计算fn(x0)的值共需要次运算.(
A.2n
B.2n
C.
D.n+1

查看答案和解析>>

同步练习册答案