精英家教网 > 高中数学 > 题目详情
如图是一个从的”闯关”游戏.

规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n(n=1,2,3)关时,需要抛掷n次正四面体,如果这n次面朝下的数字之和大于则闯关成功.
(1)求闯第一关成功的概率;
(2)记闯关成功的关数为随机变量X,求X的分布列和期望。
(1) P=.
(2) X的分布列为
                                    
EX=

试题分析:(1)抛一次正四面体面朝下的数字有1,2,3,4四种情况,大于2的有两种情况,故闯第一关成功的概率为P=.
(2)记事件”抛掷n次正四面体,这n次面朝下的数字之和大于”为事件抛掷两次正四面体面朝下的数字之和的情况如图所示,易知.

设抛掷三次正四面体面朝下的数字依次记为:x,y,z,
考虑x+y+z>8的情况,当x=1时,y+z>7有1种情况;
当x=2时,y+z>6有3种情况;当x=3时,y+z>5有6种情况;
当x=4时,y+z>4有10种情况.
.
由题意知,X的所有可能取值为0,1,2,3.
P(X 
P(X 
P(X 
P(X.
∴X的分布列为
                                    
EX=
点评:中档题,本题综合性较强,综合考查了古典概型概率的计算,独立事件同时发生的概率公式,随机变量的分布列及其期望。在(II)小题的解答中,注意就x+y+z的不同取值情况加以分析,易错易漏,应高度注意。此类问题比较典型,对计算能力、分析问题解决问题的能力要求较高。是高考题中的“应用问题”。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在两个不同的口袋中,各装有大小、形状完全相同的1个红球、2个黄球.现分别从每一个口袋中各任取2个球,设随机变量为取得红球的个数.
(Ⅰ)求的分布列;
(Ⅱ)求的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲和乙参加智力答题活动,活动规则:①答题过程中,若答对则继续答题;若答错则停止答题;②每人最多答3个题;③答对第一题得10分,第二题得20分,第三题得30分,答错得0分。已知甲答对每个题的概率为,乙答对每个题的概率为
(1)求甲恰好得30分的概率;
(2)设乙的得分为,求的分布列和数学期望;
(3)求甲恰好比乙多30分的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

袋内有5个白球,6个红球,从中摸出两球,记X=则X的分布列为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两位篮球运动员进行定点投篮,甲投篮一次命中的概率为,乙投篮一次命中的概率为.每人各投4个球,两人投篮命中的概率互不影响.
(1)求甲至多命中1个球且乙至少命中1个球的概率;
(2)若规定每投篮一次命中得3分,未命中得分,求乙所得分数的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.
(1)设所选3人中女生人数为,求的分布列及数学期望;
(2)在男生甲被选中的情况下,求女生乙也被选中的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.
(注:本小题结果可用分数表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在某社区举办的《有奖知识问答比赛》中,甲、乙、丙三人同时回答某一道题,已知甲回答对这道题的概率是,甲、丙二人都回答错的概率是,乙、丙二人都回答对的概率是
(Ⅰ)求乙、丙二人各自回答对这道题的概率;
(Ⅱ)设乙、丙二人中回答对该题的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设随机变量服从正态分布,若,则等于  (  )  
A.B.C.D.

查看答案和解析>>

同步练习册答案