精英家教网 > 高中数学 > 题目详情
甲、乙两位篮球运动员进行定点投篮,甲投篮一次命中的概率为,乙投篮一次命中的概率为.每人各投4个球,两人投篮命中的概率互不影响.
(1)求甲至多命中1个球且乙至少命中1个球的概率;
(2)若规定每投篮一次命中得3分,未命中得分,求乙所得分数的概率分布和数学期望.
(1)80:81
(2)分布列如下:


0
4
8
12
P





            13分

试题分析:解:(1)设“甲至多命中1个球””为事件A,“乙至少命中1个球”为事件B,  1分
由题意得,
                          5分
∴甲至多命中2个球且乙至少命中2个球的概率为
                            6分
(2)乙所得分数的可能取值为,                           7分

                      11分
分布列如下:


0
4
8
12
P





            13分
                14分
点评:主要是考查了分布列的求解以及独立事件的概率,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

气象部门提供了某地今年六月份(30天)的日最高气温的统计表如下:
日最高气温t (单位:℃)
t22℃
22℃<t28℃
28℃<t32℃

天数
6
12
   

由于工作疏忽,统计表被墨水污染,Y和Z数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.
某水果商根据多年的销售经验,六月份的日最高气温t (单位:℃)对西瓜的销售影响如下表:
日最高气温t (单位:℃)
t22℃
22℃<t28℃
28℃<t32℃

日销售额(千元)
2
5
    6
8
(Ⅰ) 求的值;
(Ⅱ) 若视频率为概率,求六月份西瓜日销售额的期望和方差;
(Ⅲ) 在日最高气温不高于32℃时,求日销售额不低于5千元的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校50名学生参加智力答题活动,每人回答3个问题,答对题目个数及对应人数统计结果见下表:
答对题目个数
0
1
2
3
人数
5
10
20
15
根据上表信息解答以下问题:
(Ⅰ)从50名学生中任选两人,求两人答对题目个数之和为4或5的概率;
(Ⅱ)从50名学生中任选两人,用X表示这两名学生答对题目个数之差的绝对值,求随机变量X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点数的质地均匀的正四面体)决定是否过关,在闯第n(n=1,2,3)关时,需要抛掷n次骰子,当n次骰子面朝下的点数之和大于n2时,则算闯此关成功,并且继续闯关,否则停止闯关.每次抛掷骰子相互独立.
(1)求仅闯过第一关的概率;
(2)记成功闯过的关数为ξ,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了解某校高三毕业班报考体育专业学生的体重(单位:千克)情况,将从该市某学校抽取的样本数据整理后得到如下频率分布直方图.已知图中从左至右前3个小组的频率之比为1:2:3,其中第2小组的频数为12.

(Ⅰ)求该校报考体育专业学生的总人数n;
(Ⅱ)若用这所学校的样本数据来估计该市的总体情况,现从该市报考体育专业的学生中任选3人,设表示体重超过60千克的学生人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某市直小学为了加强管理,对全校教职工实行新的临时事假制度:“每位教职工每月在正常的工作时间,临时有事,可请假至多三次,每次至多一小时”.现对该制度实施以来50名教职工请假的次数进行调查统计,结果如下表所示:
请假次数




人数




根据上表信息解答以下问题:
(1)从该小学任选两名教职工,用表示这两人请假次数之和,记“函数在区间上有且只有一个零点”为事件,求事件发生的概率
(2)从该小学任选两名职工,用表示这两人请假次数之差的绝对值,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图是一个从的”闯关”游戏.

规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n(n=1,2,3)关时,需要抛掷n次正四面体,如果这n次面朝下的数字之和大于则闯关成功.
(1)求闯第一关成功的概率;
(2)记闯关成功的关数为随机变量X,求X的分布列和期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.
(Ⅰ)求X的分布列;
(Ⅱ)求X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某学校要对学生进行身体素质全面测试,对每位学生都要进行考核(即共项测试,随机选取项),若全部合格,则颁发合格证;若不合格,则重新参加下期的考核,直至合格为止,若学生小李抽到“引体向上”一项,则第一次参加考试合格的概率为,第二次参加考试合格的概率为,第三次参加考试合格的概率为,若第四次抽到可要求调换项目,其它选项小李均可一次性通过.
(1)求小李第一次考试即通过的概率
(2)求小李参加考核的次数分布列.

查看答案和解析>>

同步练习册答案