精英家教网 > 高中数学 > 题目详情
袋内有5个白球,6个红球,从中摸出两球,记X=则X的分布列为________.

X
0
1
P


P(X=0)=
P(X=1)=1-.故X的分布列如下表.
X
0
1
P


练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为,乙获胜的概率为,现已赛完两局,乙暂时以2∶0领先.
(1)求甲获得这次比赛胜利的概率;
(2)设比赛结束时比赛的局数为随机变量X,求随机变量X的概率分布和数学期望EX.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

气象部门提供了某地今年六月份(30天)的日最高气温的统计表如下:
日最高气温t (单位:℃)
t22℃
22℃<t28℃
28℃<t32℃

天数
6
12
   

由于工作疏忽,统计表被墨水污染,Y和Z数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.
某水果商根据多年的销售经验,六月份的日最高气温t (单位:℃)对西瓜的销售影响如下表:
日最高气温t (单位:℃)
t22℃
22℃<t28℃
28℃<t32℃

日销售额(千元)
2
5
    6
8
(Ⅰ) 求的值;
(Ⅱ) 若视频率为概率,求六月份西瓜日销售额的期望和方差;
(Ⅲ) 在日最高气温不高于32℃时,求日销售额不低于5千元的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(a+x)5的展开式中x3的系数等于10,则a的值为(  )
A.a=1B.a=-1C.a=±1D.a=±2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
求甲在4局以内(含4局)赢得比赛的概率;
为比赛决出胜负时的总局数,求的分布列和均值(数学期望).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点数的质地均匀的正四面体)决定是否过关,在闯第n(n=1,2,3)关时,需要抛掷n次骰子,当n次骰子面朝下的点数之和大于n2时,则算闯此关成功,并且继续闯关,否则停止闯关.每次抛掷骰子相互独立.
(1)求仅闯过第一关的概率;
(2)记成功闯过的关数为ξ,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛掷两枚骰子,至少有一个4点或5点出现时,就说这次试验成功,则在10次试验中,成功次数X的期望是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图是一个从的”闯关”游戏.

规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n(n=1,2,3)关时,需要抛掷n次正四面体,如果这n次面朝下的数字之和大于则闯关成功.
(1)求闯第一关成功的概率;
(2)记闯关成功的关数为随机变量X,求X的分布列和期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某射手射击所得环数X的分布列如下:
X
7
8
9
10
P
x
0.1
0.3
y
已知X的期望E(X)=8.9,则y的值为________.

查看答案和解析>>

同步练习册答案