精英家教网 > 高中数学 > 题目详情
如图,ABCD是边长为的正方形,ABEF是矩形,且二面角CABF是直二面角,,G是EF的中点,
(1)求GB与平面AGC所成角的正弦值.
(2)求二面角B—AC—G的余弦值.
(1)           (2)
建立空间直角坐标系,利用向量解决(1)求GB与平面AGC所成角的正弦值,求GB与平面AGC的法向量的余弦值;(2)求二面角B—AC—G的余弦值,即求两个平面法向量的余弦值
(向量法)
解:如图,以A为原点建立直角坐标系,
A(0,0,0),B(0,2a,0),C(0,2a,2a),
Gaa,0),Fa,0,0).
(由题意可得

设平面AGC的法向量为
    ……
                         ……
(2)因是平面AGC的法向量,
又AF⊥平面ABCD,平面ABCD的法向量,得

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在一个正方体中,为正方形四边上的动点,为底面正方形的中心,分别为的中点,点为平面内一点,线段互相平分,则满足的实数的值有(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在所有棱长都相等的斜三棱柱中,已知,且,连接
(1)求证:平面
(2)求证:四边形为正方形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知A,B,C,D为四个不同的点,则它们能确定(  )个平面。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知正方形ABCD的边长为2,AC∩BD=O,将正方形ABCD沿对角线BD折起,得到三棱锥A—BCD。
(1)求证:平面AOC⊥平面BCD;
(2)若三棱锥A—BCD的体积为,求AC的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示两个不同的平面,l表示既不在a内也不在内的直线,存在以下
三种情况:.若以其中两个为条件,另一个为结论,构成命题,
其中正确命题的个数为
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某几何体中的线段AB,在其三视图中对应线段的长分别为2、4、4,则在原几何体中线段AB的长度为(   )
A.B.C.6D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,侧棱长为的正三棱锥中,,过作截面,则截面三角形周长的最小值是________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1与C1B所成角的大小。

查看答案和解析>>

同步练习册答案