精英家教网 > 高中数学 > 题目详情
某几何体中的线段AB,在其三视图中对应线段的长分别为2、4、4,则在原几何体中线段AB的长度为(   )
A.B.C.6D.18
B
解:利用三视图的特点,可以把线段放在教室里面,利用对角线长,求解得到。、
以点A为原点,建立空间直角坐标系,点B坐标为(x,y,z)
x²+ y²=4²
y²+z ²=4²
x²+z²=2²
解得x² +y² +z² =18    ∴|AB|=3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥底面,底面为正方形,分别是的中点.
(I)求证:平面
(II)求证:
(III)设PD="AD=a," 求三棱锥B-EFC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD是边长为的正方形,ABEF是矩形,且二面角CABF是直二面角,,G是EF的中点,
(1)求GB与平面AGC所成角的正弦值.
(2)求二面角B—AC—G的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,其棱长为2,则异面直线DC与BC1之间的距离为( )   
A.1B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图正方形BCDE的边长为a,已知AB=BC,将直角△ABE沿BE边折起,A点在面BCDE上的射影为D点,则翻折后的几何体中有如下描述:
(1)ADE所成角的正切值是
(2)的体积是
(3)AB∥CD;
(4)平面EAB⊥平面ADEB;
(5)直线PA与平面ADE所成角的正弦值为
其中正确的叙述有_____(写出所有正确结论的编号)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在直三棱柱中,,的中点,的中点,,,,则到平面的距离是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在空间四边形ABCD中,AD=BC=2,E、F分别是AB、CD的中点,EF=,则异面直线AD与BC所成角的大小为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个四棱锥的三视图如图所示,E为侧棱PC上一动点。

(1)画出该四棱锥的直观图,并指出几何体的主要特征(高、底等).
(2)点在何处时,面EBD,并求出此时二面角平面角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
(理科)已知四棱锥的底面是直角梯形,
侧面为正三角形,.如图4所示.

(1) 证明:平面
(2) 求四棱锥的体积

查看答案和解析>>

同步练习册答案