【题目】如图,已知抛物线:,过焦点斜率大于零的直线交抛物线于、两点,且与其准线交于点.
(1)若线段的长为,求直线的方程;
(2)在上是否存在点,使得对任意直线,直线,,的斜率始终成等差数列,若存在求点的坐标;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.
(I)根据直方图估计这个开学季内市场需求量的众数和中位数;
(II)将表示为的函数;
(III)根据直方图估计利润不少于4800元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左、右焦点分别为,线段的中点分别为,且是面积为的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)过作直线交椭圆于两点,使,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产产品的年固定成本为250万元,每生产千件需另投入成本万元,当年产量不足80千件时(万元);当年产量不小于80千件时(万元),每千件产品的售价为50万元,该厂生产的产品能全部售完.
(1)写出年利润万元关于(千件)的函数关系;
(2)当年产量为多少千件时该厂当年的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,以原点为圆心,椭圆的长半轴为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知点,为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,O为坐标原点,点F为抛物线C1:的焦点,且抛物线C1上点P处的切线与圆C2:相切于点Q.
(Ⅰ)当直线PQ的方程为时,求 抛物线C1的方程;
(Ⅱ)当正数P变化时,记S1 ,S2分别为△FPQ,△FOQ的面积,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为2,左、右顶点分别为,是椭圆上一点,记直线的斜率为,且有.
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,以为直径的圆经过原点,且线段的垂直平分线在轴上的截距为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴所有职工20元组成;③后续保养的平均费用是每单位元(试剂的总产量为单位,).
(1)把生产每单位试剂的成本表示为的函数关系,并求的最小值;
(2)如果产品全部卖出,据测算销售额(元)关于产量(单位)的函数关系为,试问:当产量为多少时生产这批试剂的利润最高?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知圆及点,.
(1)若直线平行于,与圆相交于,两点,,求直线的方程;
(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com