精英家教网 > 高中数学 > 题目详情
已知定义在正实数集上的函数f(x)=
1
2
x2+2ex
,g(x)=3e2lnx+b(其中e为常数,e=2.71828…),若这两个函数的图象有公共点,且在该点处的切线相同.
(Ⅰ)求实数b的值;
(Ⅱ)当x∈[1,e]时,2(f(x)-2ex)+
a
6e2
(2g(x)+e2)≤(a+2)x
恒成立,求实数a的取值范围.
(Ⅰ)求导数可得:f'(x)=x+2e,g′(x)=
3e2
x
…(2分)
设函数f(x)=
1
2
x2+2ex
与g(x)=3e2lnx+b的图象有公共点为(x0,y0
由题意得 
1
2
x02+2ex0=3e2lnx0+b
x0+2e=
3e2
x0
x0>0
…(4分)
解得:b=-
e2
2
…(7分)
(Ⅱ)由(Ⅰ)知,g(x)=3e2lnx-
e2
2

所以2(f(x)-2ex)+
a
6e2
(2g(x)+e2)=x2+alnx
,即a(x-lnx)≥x2-2x…(1)
当x∈[1,e]时,lnx≤1≤x,且等号不能同时成立,∴x-lnx>0
所以由(1)式可得a≥
x2-2x
x-lnx
在[1,e]上恒成立   …(9分)
F(x)=
x2-2x
x-lnx
,x∈[1,e],则F′(x)=
(x-1)(x+2-2lnx)
(x-lnx)2
…(11分)
显然有x-1≥0,又lnx≤1,∴x+2-2lnx>0
所以F'(x)≥0(仅当x=1时取等号),
∴F(x)在[1,e]上为增函数 …(12分)
F(x)max=F(e)=
e2-2e
e-1

所以实数a的取值范围是[
e2-2e
e-1
,+∞)
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在正实数集上的函数f(x)=x2+4ax+1,g(x)=6a2lnx+2b+1,其中a>0.
(Ⅰ)设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,用a表示b,并求b的最大值;
(Ⅱ)设h(x)=f(x)+g(x),证明:若a≥
3
-1
,则对任意x1,x2∈(0,+∞),x1≠x2
h(x2)-h(x1)
x2-x1
>8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在正实数集上的函数f(x)=
12
x2+2ax
,g(x)=3a2lnx+b,其中a>0,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(Ⅰ)用a表示b,并求b的最大值;
(Ⅱ)求证:f(x)≥g(x)(x>0).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在正实数集上的函数f(x)满足①若x>1,则f(x)<0;②f(
12
)
=1;③对定义域内的任意实数x,y,都有:f(xy)=f(x)+f(y),则不等式f(x)+f(5-x)≥-2的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在正实数集上的连续函数f(x)=
1
1-x
+
2
x2-1
(0<x<1)
x+a   (x≥1)
,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•河西区二模)已知定义在正实数集上的函数f(x)=
3x22
+ax,g(x)=4a2lnx+b,其中a>0,设两曲线x=f(x)与f=g(x)有公共点,且在公共点处的切线相同.
(I)若a=1,求两曲线y=f(x)与y=g(x)在公共点处的切线方程;
(Ⅱ)用a表示b,并求b的最大值.

查看答案和解析>>

同步练习册答案