精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 )的离心率为 分别是它的左、右焦点,且存在直线,使关于的对称点恰好是圆 )的一条直径的两个端点.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与抛物线)相交于两点,射线与椭圆分别相交于点.试探究:是否存在数集,当且仅当时,总存在,使点在以线段为直径的圆内?若存在,求出数集;若不存在,请说明理由.

【答案】(Ⅰ); (Ⅱ)见解析.

【解析】试题分析:(Ⅰ)椭圆的焦距等于圆的直径,所以,根据离心率求出

(Ⅱ)因为关于的对称点恰好是圆的一条直径的两个端点,所以直线是线段的垂直平分线(是坐标原点),故方程为,与联立得: ,点在以线段为直径的圆内 韦达定理代入求解即可.

试题解析:

(Ⅰ)将圆的方程配方得: ,所以其圆心为,半径为2.

由题设知,椭圆的焦距等于圆的直径,所以

,所以,从而,故椭圆的方程为.

(Ⅱ)因为关于的对称点恰好是圆的一条直径的两个端点,所以直线是线段的垂直平分线(是坐标原点),故方程为,与联立得: ,由其判别式,①

,则 .

从而 .

因为的坐标为,所以 .

注意到同向, 同向,所以

在以线段为直径的圆内

,②

当且仅当 时,总存在,使②成立.

又当时,由韦达定理知方程 的两根均为正数,故使②成立的,从而满足①.

故存在数集,当且仅当时,总存在,使点在以线段为直径的圆内.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分8分) 已知抛物线Cy=-x2+4x-3

1)求抛物线C在点A0,-3)和点B30)处的切线的交点坐标;

2)求抛物线C与它在点A和点B处的切线所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①函数 是奇函数;
②存在实数x,使sinx+cosx=2;
③若α,β是第一象限角且α<β,则tanα<tanβ;
是函数 的一条对称轴;
⑤函数 的图象关于点 成中心对称.
其中正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】咖啡馆配制两种饮料,甲种饮料分别用奶粉、咖啡、糖。乙种饮料分别用奶粉、咖啡、糖。已知每天使用原料限额为奶粉、咖啡、糖。如果甲种饮料每杯能获利元,乙种饮料每杯能获利元。每天在原料的使用限额内饮料能全部售出,每天应配制两种饮料各多少杯能获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)已知2sinx=sin( ﹣x),求 的值;
(2)求函数f(x)=ln(sinx﹣ )+ 的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:①“若,则”是假命题;②从正方体的面对角线中任取两条作为一对,其中所成角为的有48对;③“ ”是方程表示焦点在轴上的双曲线的充分不必要条件;④点是曲线 )上的动点,且满足,则的取值范围是;⑤若随机变量服从正态分布,且,则.其中正确命题的序号是__________(请把正确命题的序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形OQRP为矩形,其中P,Q分别是函数f(x)= sinwx(A>0,w>0)图象上的一个最高点和最低点,O为坐标原点,R为图象与x轴的交点.

(1)求f(x)的解析式
(2)对于x∈[0,3],方程f2(x)﹣af(x)+1=0恒有四个不同的实数根,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某货轮匀速行驶在相距海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为),其他费用为每小时元,且该货轮的最大航行速度为海里/小时.

(1)请将从甲地到乙地的运输成本(元)表示为航行速度(海里/小时)的函数;

(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的最小正周期为.

1)求的值;

2)将函数的图像向左平移个单位,再将得到的图像上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图像,求函数的单调递减区间.

查看答案和解析>>

同步练习册答案