精英家教网 > 高中数学 > 题目详情

【题目】给出下列命题:
①函数 是奇函数;
②存在实数x,使sinx+cosx=2;
③若α,β是第一象限角且α<β,则tanα<tanβ;
是函数 的一条对称轴;
⑤函数 的图象关于点 成中心对称.
其中正确命题的序号为

【答案】①④
【解析】解:①函数 =﹣sin x,而y=﹣sin x是奇函数,故函数 是奇函数,故①正确;
②因为sinx,cosx不能同时取最大值1,所以不存在实数x使sinx+cosx=2成立,故②错误.
③令 α= ,β= ,则tanα= ,tanβ=tan =tan = ,tanα>tanβ,故③不成立.
④把x= 代入函数y=sin(2x+ ),得y=﹣1,为函数的最小值,故 是函数 的一条对称轴,故④正确;
⑤因为y=sin(2x+ )图象的对称中心在图象上,而点 不在图象上,所以⑤不成立.
所以答案是:①④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过的动圆恒与轴相切,设切点为是该圆的直径.

(Ⅰ)求点轨迹的方程;

(Ⅱ)当不在y轴上时,设直线与曲线交于另一点,该曲线在处的切线与直线交于点.求证: 恒为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)讨论函数的单调性,并证明当时, ;

(Ⅱ)证明:当时,函数有最小值,设最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= sin2x+2cos2x+m在区间[0, ]上的最大值为6,求常数m的值及此函数当x∈R时的最小值,并求相应的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论正确的是

在某项测量中,测量结果服从正态分布.若内取值的概率为0.35,则内取值的概率为0.7;

以模型去拟合一组数据时,为了求出回归方程,设,其变换后得到线性回归方程,则

已知命题若函数上是增函数,则的逆否命题是,则函数上是减函数是真命题;

设常数,则不等式恒成立的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位有工程师6人,技术员12人,技工18人,要从这些人中取一个容量为n的样本;如果采用系统抽样和分层抽样方法抽取,无须剔除个体;如果样本容量增加1个,则在采用系统抽样时需要在总体中先剔除一个个体,则n的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= [ sin(x﹣ )].
(1)求f(x)的定义域和值域;
(2)说明f(x)的奇偶性;
(3)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率为 分别是它的左、右焦点,且存在直线,使关于的对称点恰好是圆 )的一条直径的两个端点.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与抛物线)相交于两点,射线与椭圆分别相交于点.试探究:是否存在数集,当且仅当时,总存在,使点在以线段为直径的圆内?若存在,求出数集;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数 的图象,只要将y=sinx(x∈R)的图象上所有的点(
A.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
B.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
D.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

查看答案和解析>>

同步练习册答案