【题目】若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是( )
A.(x﹣2)2+(y﹣1)2=1
B.(x﹣2)2+(y+1)2=1
C.(x+2)2+(y﹣1)2=1
D.(x﹣3)2+(y﹣1)2=1
科目:高中数学 来源: 题型:
【题目】已知二次函数的图像经过点 ,且满足,
(1)求的解析式;
(2)已知,求函数在的最大值和最小值;
函数的图像上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产一批A产品需要原材料500吨,每吨原材料可创造利润12万元.该公司通过设备升级,生产这批A产品所需原材料减少了x吨,且每吨原材料创造的利润提高0.5x%;若将少用的x吨原材料全部用于生产公司新开发的B产品,每吨原材料创造的利润为12(a﹣ x)万元(a>0).
(1)若设备升级后生产这批A产品的利润不低于原来生产该批A产品的利润,求x的取值范围.
(2)若生产这批B产品的利润始终不高于设备升级后生产这批A产品的利润,求a的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4﹣4:坐标系与参数方程)
已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组中的两个函数是同一函数的有几组?
(1)y1=,y2=x–5; (2)y1=,y2=;
(3)f(x)=x,g(x)=; (4)f(x)=,F(x)=x.
A. 0组 B. 1组 C. 2组 D. 组3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在点处的切线方程为.
(1)求函数的解析式;
(2)求函数的单调区间和极值.
【答案】(1);(2)见解析.
【解析】试题分析:(1)根据导数几何意义得,再与联立方程组解得, (2)先函数导数,再求导函数零点,列表分析导函数符号变化规律,进而确定单调区间和极值
试题解析:(1),切线为,即斜率,纵坐标
即, ,解得,
解析式
(2) ,定义域为
得到在单增,在单减,在单增
极大值,极小值.
【题型】解答题
【结束】
20
【题目】如图:在四棱锥中,底面为菱形,且, 底面,
, , 是上点,且平面.
(1)求证: ;(2)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题:若关于的方程无实数根,则;命题:若关于的方程有两个不相等的正实数根,则.
(1)写出命题的否命题,并判断命题的真假;
(2)判断命题“且”的真假,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点为平面上一动点,到直线的距离为,.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)不过原点的直线与交于两点,线段的中点为,直线与直线交点的纵坐标为1,求面积的最大值及此时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com