精英家教网 > 高中数学 > 题目详情

【题目】若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是(
A.(x﹣2)2+(y﹣1)2=1
B.(x﹣2)2+(y+1)2=1
C.(x+2)2+(y﹣1)2=1
D.(x﹣3)2+(y﹣1)2=1

【答案】A
【解析】解:设圆心坐标为(a,b)(a>0,b>0),
由圆与直线4x﹣3y=0相切,可得圆心到直线的距离d= =r=1,
化简得:|4a﹣3b|=5①,
又圆与x轴相切,可得|b|=r=1,解得b=1或b=﹣1(舍去),
把b=1代入①得:4a﹣3=5或4a﹣3=﹣5,解得a=2或a=﹣ (舍去),
∴圆心坐标为(2,1),
则圆的标准方程为:(x﹣2)2+(y﹣1)2=1.
故选:A
【考点精析】利用圆的标准方程对题目进行判断即可得到答案,需要熟知圆的标准方程:;圆心为A(a,b),半径为r的圆的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数的图像经过点 ,且满足

(1)求的解析式;

(2)已知,求函数的最大值和最小值;

函数的图像上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一批A产品需要原材料500吨,每吨原材料可创造利润12万元.该公司通过设备升级,生产这批A产品所需原材料减少了x吨,且每吨原材料创造的利润提高0.5x%;若将少用的x吨原材料全部用于生产公司新开发的B产品,每吨原材料创造的利润为12(a﹣ x)万元(a>0).
(1)若设备升级后生产这批A产品的利润不低于原来生产该批A产品的利润,求x的取值范围.
(2)若生产这批B产品的利润始终不高于设备升级后生产这批A产品的利润,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形,,点分别为棱的中点.

(1)求证:∥平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4﹣4:坐标系与参数方程)
已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组中的两个函数是同一函数的有几组

(1)y1=y2=x–5; (2)y1=y2=

(3)fx)=xgx)= (4)fx)=Fx)=x

A. 0组 B. 1组 C. 2组 D. 组3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线方程为.

(1)求函数的解析式;

(2)求函数的单调区间和极值.

【答案】(1);(2)见解析.

【解析】试题分析:(1)根据导数几何意义得,再与联立方程组解得 (2)先函数导数,再求导函数零点,列表分析导函数符号变化规律,进而确定单调区间和极值

试题解析:(1),切线为,即斜率,纵坐标

,解得

解析式

(2) ,定义域为

得到单增,在单减,在单增

极大值,极小值.

型】解答
束】
20

【题目】如图:在四棱锥中,底面为菱形,且 底面

上点,且平面.

(1)求证: ;(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:若关于的方程无实数根,则;命题:若关于的方程有两个不相等的正实数根,则.

(1)写出命题的否命题,并判断命题的真假;

(2)判断命题“”的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点为平面上一动点,到直线的距离为.

)求点的轨迹的方程;

)不过原点的直线交于两点,线段的中点为,直线与直线交点的纵坐标为1,求面积的最大值及此时直线的方程.

查看答案和解析>>

同步练习册答案