精英家教网 > 高中数学 > 题目详情
是双曲线的两焦点,点在该双曲线上,且是等腰三角形,则的周长为(   )
A.B.C.D.
D

试题分析:双曲线可化为标准方程:,所以因为点在该双曲线上,且是等腰三角形,所以时,根据双曲线的定义有所以的周长为;同理当时,的周长为
点评:双曲线的定义在解题时有很重要的作用,要灵活应用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知过点的动直线与抛物线相交于两点,当直线的斜率是时,
(1)求抛物线的方程;(5分)
(2)设线段的中垂线在轴上的截距为,求的取值范围。(7分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题10分)已知,动点满足,设动点的轨迹是曲线,直线与曲线交于两点.(1)求曲线的方程;
(2)若,求实数的值;
(3)过点作直线垂直,且直线与曲线交于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直线l:y=2x-4交抛物线y2=4x于A,B两点,试在抛物线AOB这段曲线上求一点P,使△PAB的面积最大,并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆则 (   ) 
A.顶点相同.B.长轴长相同.
C.短轴长相同.D.焦距相等.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆)的离心率,直线与椭圆交于不同的两点,以线段为直径作圆,圆心为
(Ⅰ)求椭圆的方程;
(Ⅱ)当圆轴相切的时候,求的值;
(Ⅲ)若为坐标原点,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点,长轴长6,设直线交椭圆两点,求线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一动点到y轴的距离比到点(2,0)的距离小2,则此动点的轨迹方程为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E. 求轨迹E的方程,并说明该方程所表示曲线的形状.

查看答案和解析>>

同步练习册答案