精英家教网 > 高中数学 > 题目详情
一个多面体的直观图及三视图如图所示(其中E、F分别是PB、AD的中点).

(Ⅰ)求证:EF⊥平面PBC;
(Ⅱ)求三棱锥B—AEF的体积。
(1)见解析(2)
(Ⅰ)取PC的中点G,连结EG,GD,则
由(Ⅰ)知FD⊥平面PDC,面PDC,所以FD⊥DG。
所以四边形FEGD为矩形,因为G为等腰Rt△RPD斜边PC的中点,
所以DG⊥PC,


 
又DG⊥GE,PC∩EG=E,

所以DG⊥平面PBC.
因为DG//EF,所以EF⊥平面PBC。
(Ⅱ) 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面为矩形,底面,点在侧棱上,

(I)证明:是侧棱的中点;
(Ⅱ)求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,⊿是等边三角形,∠PAC=∠PBC="90" º.
(1)证明:AB⊥PC;
(2)若,且平面⊥平面,求三棱锥体积.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知四个命题,其中正确的命题是         (   )
①若直线l //平面,则直线l的垂线必平行平面
②若直线l与平面相交,则有且只有一个平面,经过l与平面垂直;
③若一个三棱锥每两个相邻侧面所成的角都相等,则这个三棱锥是正三棱锥;
④若四棱柱的任意两条对角线都相交且互相平分,则这个四棱柱为平行六面体.
A.①B.②C.③D.④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



一个空间几何体的三视图如图所 示,其中分别是五点在直立、侧立、水平三个投影面内的投影,且在主视图中,四边形为正方形且;在左视图中俯视图中
(Ⅰ)根据三视图作出空间几何体的直观图,并标明五点的位置;
(Ⅱ)在空间几何体中,过点作平面的垂线,若垂足H在直线 上,求证:平面⊥平面
(Ⅲ)在(Ⅱ)的条件下,求三棱锥的体积及其外接球的表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示, 在三棱柱中, 底面.

(1)若点分别为棱的中点,求证:平面
(2) 请根据下列要求设计切割和拼接方法:要求用平行于三棱柱的某一条侧棱的平面去截此三棱柱,切开后的两个几何体再拼接成一个长方体. 简单地写出一种切割和拼接方法,并写出拼接后的长方体的表面积(不必写出计算过程).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图,四棱锥G—ABCD中,ABCD是正方形,且边长为2a,面ABCD⊥面ABG,AG=BG。
(1)画出四棱锥G—ABCD的三视图;
 
(2)在四棱锥G—ABCD中,过点B作平面
AGC的垂线,若垂足H在CG上,
求证:面AGD⊥面BGC
(3)在(2)的条件下,求三棱锥D—ACG的体积
及其外接球的表面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右图P、Q分别是A1B1、BB1的四等分点,M、N分别是D1C1、CC1的中点.沿M→N→Q→P截去一部分,截去的几何体是什么?剩下的几何体也是吗?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:

ABEF;
AB与CM成60°角;
EFMN是异面直线;
MNCD.
其中正确的是(  )
A.①②B.③④C.②③D.①③

查看答案和解析>>

同步练习册答案