精英家教网 > 高中数学 > 题目详情
4.求下列函数的导数
(1)y=x3+ln(1+x)
(2)y=$\frac{sin2x}{x-2}$.

分析 根据函数的导数公式进行求解即可.

解答 解:(1)函数的导数y′=3x2+$\frac{1}{1+x}$=$\frac{3{x}^{3}+3{x}^{2}+1}{x+1}$,
(2)函数的导数y′=$\frac{2(x-2)cos2x-sin2x}{(x-2)^{2}}$.

点评 本题主要考查函数的导数的计算,根据函数的导数公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.函数$f(x)=\frac{x}{x-1}$的值域是(-∞,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\frac{sin(π+x)cos(π-x)}{{sin(\frac{π}{2}-x)cos(2π+x)}}$.
(1)化简函数f(x)的解析式;
(2)若α为第三象限角且$f(α)=\frac{1}{3}$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若P(2,1)为圆x2+(y+1)2=25的弦AB的中点,则直线AB的方程是x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=cos4x-2sinxcosx-sin4x.
(1)求函数的最小正周期;
(2)求函数的最大值及其相对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设全集U=R,集合A={x|-2x2+3x+5>0},集合B={x|3x2+6≤19x},求A∪B,A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点A(1,-3),B(-5,5),则线段AB中点到直线4x-3y+1=0的距离等于(  )
A.$\frac{4}{5}$B.$\frac{10}{7}$C.$\frac{12}{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2$\sqrt{3}$,且AC,BD交于点O,E是PB上任意一点.
(1)求证:AC⊥DE
(2)已知二面角A-PB-D的余弦值为$\frac{\sqrt{15}}{5}$,若E为PB的中点,求EC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,函数y=log24x图象上的两点A,B和y=log2x上的点C,线段AC平行于y轴,三角形ABC为正三角形时,点B的坐标为(p,q),则p2×2q=(  )
A.12B.$12\sqrt{3}$C.6D.$6\sqrt{3}$

查看答案和解析>>

同步练习册答案