精英家教网 > 高中数学 > 题目详情
12.若P(2,1)为圆x2+(y+1)2=25的弦AB的中点,则直线AB的方程是x+y-3=0.

分析 由圆的方程找出圆心C的坐标,连接CP,由P为弦AB的中点,根据垂径定理的逆定理得到CP垂直于AB,根据两直线垂直时斜率的乘积为-1,由P与C的坐标求出直线PC的斜率,进而确定出弦AB所在直线的斜率,由P的坐标及求出的斜率,写出直线AB的方程即可.

解答 解:由圆x2+(y+1)2=25,得到圆心C坐标为(0,-1),
又P(2,1),∴kPC=1,
∴弦AB所在的直线方程斜率为-1,又P为AB的中点,
则直线AB的方程为y-1=-(x-2),即x+y-3=0.
故答案为:x+y-3=0.

点评 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,垂径定理,两直线垂直时斜率满足的关系,以及直线的点斜式方程,根据题意得出直线PC与直线AB垂直是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆的两焦点为F1(0,-2)、F2(0,2),离心率为$\frac{1}{2}$
(1)求椭圆的标准方程;
(2)设点P在椭圆上,且|PF1|•|PF2|=16,求∠F1PF2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若集合A={x|x2-mx+3=0,x∈R},B={x|x2-x+n=0,x∈R},且A∪B={0,1,3},则实数m,n的值分别是m=4,n=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线m、n与平面α、β,则下列说法正确的是(  )
A.若m∥α,n∥α,则m∥nB.若m∥α,n⊥α,则n⊥mC.若m⊥α,n⊥β,则α⊥βD.若m⊥α,n⊥β,则n⊥m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow a=(2,-1,2)$,$\overrightarrow b=(-4,2,x)$且$\overrightarrow a⊥\overrightarrow b$,则x的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等式:
cos261°+sin231°+cos61°sin31°=a
cos266°+sin236°+cos66°sin36°=a
cos220°+sin210°+cos20°sin(-10°)=a
cos28°+sin222°+cos8°sin(-22°)=a
(Ι)根据以上所给的等式归纳出一个具有一般性的等式,并指出实数a的值
(Ⅱ)证明你写的等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数的导数
(1)y=x3+ln(1+x)
(2)y=$\frac{sin2x}{x-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已经集合A={x|(8x-1)(x-1)≤0};集合C={x|a<x<2a+5}
(1)若${(\frac{1}{4})^t}∈A$,求实数t的取值集合B;
(2)在(1)的条件下,若(A∪B)⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x3-3x2-9x+11
(Ⅰ)求函数f(x)的递减区间.
(Ⅱ)讨论函数f(x)的极值情况,如有,求出极值.

查看答案和解析>>

同步练习册答案