·ÖÎö £¨1£©ÓÉÍÖÔ²¹ýµã$£¨\frac{{\sqrt{5}}}{2}£¬\frac{{\sqrt{3}}}{2}£©$£¬ÀëÐÄÂÊΪ$\frac{{2\sqrt{5}}}{5}$£¬Áгö·½³ÌÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{5}+{y^2}=1$£®
£¨2£©µ±Ö±ÏßABµÄбÂʲ»´æÔÚʱ£¬$l£ºx=\frac{5}{2}£¬A{B_1}$ÓëA1BµÄ½»µãÊÇ$£¨\frac{9}{4}£¬0£©$£»µ±Ö±ÏßABµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßABΪy=k£¨x-2£©£¬ÓÉ$\left\{\begin{array}{l}{y=k£¨x-2£©}\\{{x}^{2}+5{y}^{2}=5}\end{array}\right.$£¬µÃ£º£¨1+5k2£©x2-20k2x+20k2-5=0£¬ÀûÓÃΤ´ï¶¨Àí¡¢Ö±Ïß·½³Ì£¬½áºÏÒÑÖªÌõ¼þÇó³öÖ±ÏßAB1ÓëA1B¹ý¶¨µã$£¨\frac{9}{4}£¬0£©$£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$¹ýµã$£¨\frac{{\sqrt{5}}}{2}£¬\frac{{\sqrt{3}}}{2}£©$£¬ÀëÐÄÂÊΪ$\frac{{2\sqrt{5}}}{5}$£®
¡àÓÉÌâÒâµÃ$\left\{\begin{array}{l}{a^2}={b^2}+{c^2}\\ \frac{5}{{4{a^2}}}+\frac{3}{{4{b^2}}}=1\\ \frac{c}{a}=\frac{{2\sqrt{5}}}{5}\end{array}\right.£¬½âµÃ\left\{\begin{array}{l}a=\sqrt{5}\\ b=1\\ c=2\end{array}\right.$£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{5}+{y^2}=1$£®
£¨2£©¢Ùµ±Ö±ÏßABµÄбÂʲ»´æÔÚʱ£¬×¼Ïß$l£ºx=\frac{5}{2}£¬A{B_1}$ÓëA1BµÄ½»µãÊÇ$£¨\frac{9}{4}£¬0£©$£»
¢Úµ±Ö±ÏßABµÄбÂÊ´æÔÚʱ£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßABΪy=k£¨x-2£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-2£©}\\{{x}^{2}+5{y}^{2}=5}\end{array}\right.$£¬ÏûÈ¥y£¬ÕûÀíµÃ£º£¨1+5k2£©x2-20k2x+20k2-5=0£¬
¡à${x_1}+{x_2}=\frac{{20{k^2}}}{{1+5{k^2}}}£¬{x_1}{x_2}=\frac{{20{k^2}-5}}{{1+5{k^2}}}$£¬
Éè$A£¨\frac{5}{2}£¬{y_1}£©£¬B£¨\frac{5}{2}£¬{y_2}£©$£¬Ôò${l_{A{B_1}}}£ºy=\frac{{{y_2}-{y_1}}}{{\frac{5}{2}-{x_1}}}£¨x-\frac{5}{2}£©+{y_2}$£¬¢Ù£¬
${l_{{A_1}{B_{\;}}}}£ºy=\frac{{{y_2}-{y_1}}}{{{x_2}-\frac{5}{2}}}£¨x-\frac{5}{2}£©+{y_1}$£¬¢Ú£¬
ÁªÁ¢¢Ù¢Ú½âµÃ£ºx=$\frac{{x}_{1}{x}_{2}-\frac{25}{4}}{{x}_{1}+{x}_{2}-5}$=$\frac{\frac{20{k}^{2}-5}{1+5{k}^{2}}-\frac{25}{4}}{\frac{20{k}^{2}}{1+5{k}^{2}}-5}$=$\frac{-45£¨1+{k}^{2}£©}{-20£¨1+{k}^{2}£©}$=$\frac{9}{4}$£¬
´úÈë¢Ù£¬µÃ£º
$y=\frac{{k£¨{x_2}-{x_1}£©}}{{-10+4{x_1}}}+{y_2}=\frac{{-9k£¨{x_1}+{x_2}£©+4k{x_2}{x_1}+20k}}{{4{x_1}-10}}=\frac{{-9k•\frac{{20{k^2}}}{{1+5{k^2}}}+4k•\frac{{20{k^2}-5}}{{1+5{k^2}}}}}{{4{x_1}-10}}=0$£¬
×ÛÉÏ£¬Ö±ÏßAB1ÓëA1B¹ý¶¨µã$£¨\frac{9}{4}£¬0£©$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌÇ󷨣¬¿¼²é¿¼²éÁ½Ö±ÏߵĽ»µãÊÇ·ñΪ¶¨µãµÄÅжÏÓëÇ󷨣¬¿¼²éÍÖÔ²¡¢Î¤´ï¶¨Àí¡¢¸ùµÄÅбðʽ¡¢Ö±Ïß·½³Ì¡¢ÏÒ³¤¹«Ê½µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | $\sqrt{2}$ | C£® | 2 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2n+1 | B£® | 3n | C£® | $\frac{{n}^{2}+2n}{2}$ | D£® | $\frac{{n}^{2}+3n+2}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com