7£®Æ½ÃæÖ±½Ç×ø±êϵÖУ¬ÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$¹ýµã$£¨\frac{{\sqrt{5}}}{2}£¬\frac{{\sqrt{3}}}{2}£©$£¬ÀëÐÄÂÊΪ$\frac{{2\sqrt{5}}}{5}$£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©¹ýµãK£¨2£¬0£©×÷Ò»Ö±ÏßÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬¹ýA£¬Bµã×÷ÍÖÔ²ÓÒ×¼ÏߵĴ¹Ïߣ¬´¹×ã·Ö±ðΪA1£¬B1£¬ÊÔÎÊÖ±ÏßAB1ÓëA1BµÄ½»µãÊÇ·ñΪ¶¨µã£¬ÈôÊÇ£¬Çó³ö¶¨µãµÄ×ø±ê£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²¹ýµã$£¨\frac{{\sqrt{5}}}{2}£¬\frac{{\sqrt{3}}}{2}£©$£¬ÀëÐÄÂÊΪ$\frac{{2\sqrt{5}}}{5}$£¬Áгö·½³ÌÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{5}+{y^2}=1$£®
£¨2£©µ±Ö±ÏßABµÄбÂʲ»´æÔÚʱ£¬$l£ºx=\frac{5}{2}£¬A{B_1}$ÓëA1BµÄ½»µãÊÇ$£¨\frac{9}{4}£¬0£©$£»µ±Ö±ÏßABµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßABΪy=k£¨x-2£©£¬ÓÉ$\left\{\begin{array}{l}{y=k£¨x-2£©}\\{{x}^{2}+5{y}^{2}=5}\end{array}\right.$£¬µÃ£º£¨1+5k2£©x2-20k2x+20k2-5=0£¬ÀûÓÃΤ´ï¶¨Àí¡¢Ö±Ïß·½³Ì£¬½áºÏÒÑÖªÌõ¼þÇó³öÖ±ÏßAB1ÓëA1B¹ý¶¨µã$£¨\frac{9}{4}£¬0£©$£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$¹ýµã$£¨\frac{{\sqrt{5}}}{2}£¬\frac{{\sqrt{3}}}{2}£©$£¬ÀëÐÄÂÊΪ$\frac{{2\sqrt{5}}}{5}$£®
¡àÓÉÌâÒâµÃ$\left\{\begin{array}{l}{a^2}={b^2}+{c^2}\\ \frac{5}{{4{a^2}}}+\frac{3}{{4{b^2}}}=1\\ \frac{c}{a}=\frac{{2\sqrt{5}}}{5}\end{array}\right.£¬½âµÃ\left\{\begin{array}{l}a=\sqrt{5}\\ b=1\\ c=2\end{array}\right.$£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{5}+{y^2}=1$£®
£¨2£©¢Ùµ±Ö±ÏßABµÄбÂʲ»´æÔÚʱ£¬×¼Ïß$l£ºx=\frac{5}{2}£¬A{B_1}$ÓëA1BµÄ½»µãÊÇ$£¨\frac{9}{4}£¬0£©$£»
¢Úµ±Ö±ÏßABµÄбÂÊ´æÔÚʱ£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßABΪy=k£¨x-2£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-2£©}\\{{x}^{2}+5{y}^{2}=5}\end{array}\right.$£¬ÏûÈ¥y£¬ÕûÀíµÃ£º£¨1+5k2£©x2-20k2x+20k2-5=0£¬
¡à${x_1}+{x_2}=\frac{{20{k^2}}}{{1+5{k^2}}}£¬{x_1}{x_2}=\frac{{20{k^2}-5}}{{1+5{k^2}}}$£¬
Éè$A£¨\frac{5}{2}£¬{y_1}£©£¬B£¨\frac{5}{2}£¬{y_2}£©$£¬Ôò${l_{A{B_1}}}£ºy=\frac{{{y_2}-{y_1}}}{{\frac{5}{2}-{x_1}}}£¨x-\frac{5}{2}£©+{y_2}$£¬¢Ù£¬
${l_{{A_1}{B_{\;}}}}£ºy=\frac{{{y_2}-{y_1}}}{{{x_2}-\frac{5}{2}}}£¨x-\frac{5}{2}£©+{y_1}$£¬¢Ú£¬
ÁªÁ¢¢Ù¢Ú½âµÃ£ºx=$\frac{{x}_{1}{x}_{2}-\frac{25}{4}}{{x}_{1}+{x}_{2}-5}$=$\frac{\frac{20{k}^{2}-5}{1+5{k}^{2}}-\frac{25}{4}}{\frac{20{k}^{2}}{1+5{k}^{2}}-5}$=$\frac{-45£¨1+{k}^{2}£©}{-20£¨1+{k}^{2}£©}$=$\frac{9}{4}$£¬
´úÈë¢Ù£¬µÃ£º
$y=\frac{{k£¨{x_2}-{x_1}£©}}{{-10+4{x_1}}}+{y_2}=\frac{{-9k£¨{x_1}+{x_2}£©+4k{x_2}{x_1}+20k}}{{4{x_1}-10}}=\frac{{-9k•\frac{{20{k^2}}}{{1+5{k^2}}}+4k•\frac{{20{k^2}-5}}{{1+5{k^2}}}}}{{4{x_1}-10}}=0$£¬
×ÛÉÏ£¬Ö±ÏßAB1ÓëA1B¹ý¶¨µã$£¨\frac{9}{4}£¬0£©$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌÇ󷨣¬¿¼²é¿¼²éÁ½Ö±ÏߵĽ»µãÊÇ·ñΪ¶¨µãµÄÅжÏÓëÇ󷨣¬¿¼²éÍÖÔ²¡¢Î¤´ï¶¨Àí¡¢¸ùµÄÅбðʽ¡¢Ö±Ïß·½³Ì¡¢ÏÒ³¤¹«Ê½µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨ÆäÖÐtΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2-2m¦Ñcos¦È-4=0£¨ÆäÖÐm£¾0£©
£¨1£©µãMµÄÖ±½Ç×ø±êΪ£¨2£¬2£©£¬ÇÒµãMÔÚÇúÏßCÄÚ£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨2£©Èôm=2£¬µ±¦Á±ä»¯Ê±£¬ÇóÖ±Ïß±»ÇúÏßC½ØµÃµÄÏÒ³¤µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èôº¯Êýf£¨x£©=$\left\{\begin{array}{l}{£¨4a-2£©x+a£¬x£¼1}\\{lo{g}_{a}x£¬x¡Ý1}\end{array}\right.$£¬¶ÔÈÎÒâx1¡Ùx2¶¼ÓÐ$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¼0£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[$\frac{2}{5}$£¬$\frac{1}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èô|$\overrightarrow{a}$+$\overrightarrow{b}$|=2£¬$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬Ôò|$\overrightarrow{a}$-$\overrightarrow{b}$|=£¨¡¡¡¡£©
A£®1B£®$\sqrt{2}$C£®2D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÖ±ÏßlµÄ·½³ÌΪ3x+4y-12=0£¬ÇóÂú×ãÏÂÁÐÌõ¼þµÄÖ±Ïßl¡äµÄ·½³Ì£®
£¨1£©l¡äÓëlƽÐÐÇÒ¹ýµã£¨-1£¬3£©£»
£¨2£©l¡äÓël´¹Ö±ÇÒÔÚÁ½×ø±êÖáÉϵĽؾàÏàµÈ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔڵȱÈÊýÁÐ{an}ÖУ¬a1+a2=6£¬a2+a3=12£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôbn=log2an£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®¡÷ABCÖУ¬¶¥µãAµÄ×ø±êΪ£¨1£¬2£©£¬¸ßBE£¬CFËùÔÚÖ±Ïߵķ½³Ì·Ö±ðΪ2x-3y+1=0£¬x+y=0£¬ÇóÕâ¸öÈý½ÇÐÎÈýÌõ±ßËùÔÚÖ±Ïߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÍÖÔ²$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1\;£¨a£¾b£¾0£©$µÄÁ½½¹µãÓë¶ÌÖáµÄÒ»¸ö¶ËµãµÄÁ¬Ïß¹¹³ÉµÈÑüÖ±½ÇÈý½ÇÐΣ¬Ö±Ïßx+y+1=0ÓëÒÔÍÖÔ²CµÄÉϽ¹µãΪԲÐÄ£¬ÒÔÍÖÔ²µÄ³¤°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèPΪÍÖÔ²CÉÏÒ»µã£¬Èô¹ýµãM£¨0£¬2£©µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚ²»Í¬µÄÁ½µãSºÍT£¬Âú×ã$\overrightarrow{OS}+\overrightarrow{OT}=t\overrightarrow{OP}$£¨OÎª×ø±êÔ­µã£©£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬¸ø³öµÄ3¸öÈý½ÇÐÎͼ°¸ÖÐÔ²µÄ¸öÊýÒÀ´Î¹¹³ÉÒ»¸öÊýÁеÄǰ3ÏÔòÕâ¸öÊýÁеÄÒ»¸öͨÏʽÊÇ£¨¡¡¡¡£©
A£®2n+1B£®3nC£®$\frac{{n}^{2}+2n}{2}$D£®$\frac{{n}^{2}+3n+2}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸