精英家教网 > 高中数学 > 题目详情
17.如图,给出的3个三角形图案中圆的个数依次构成一个数列的前3项,则这个数列的一个通项公式是(  )
A.2n+1B.3nC.$\frac{{n}^{2}+2n}{2}$D.$\frac{{n}^{2}+3n+2}{2}$

分析 由an-an-1=n+1,再根据累加法能求出an

解答 解:观察3个三角形图案,得:an-an-1=n+1,
再根据累加法得:
an=a1+(a2-a1)+…+(an-an-1
=3+3+4+5+…n+1=$\frac{n2+3n+2}{2}$.
故选:D.

点评 本题考查数列的通项公式的求法,考查累加法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.平面直角坐标系中,椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点$(\frac{{\sqrt{5}}}{2},\frac{{\sqrt{3}}}{2})$,离心率为$\frac{{2\sqrt{5}}}{5}$.
(1)求椭圆C的标准方程;
(2)过点K(2,0)作一直线与椭圆C交于A,B两点,过A,B点作椭圆右准线的垂线,垂足分别为A1,B1,试问直线AB1与A1B的交点是否为定点,若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且经过点M(-3,-1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:x-y-2=0与椭圆C交于A,B两点,点P为椭圆C上一动点,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数g(x)=x2+bx+c,且关于x的不等式g(x)<0的解集为(-$\frac{7}{9}$,0).
(1)求实数b,c的值;
(2)若不等式0≤g(x)-$\frac{{2}^{n}}{({2}^{n}+1)^{2}}$<$\frac{2}{9}$对于任意n∈N*恒成立,求满足条件的实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若不等式[2tx2-(t2-1)x+2]•lnx≤0对任意x∈(0,+∞)恒成立,则实数t的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F 分别是 BC,PC的中点.
(1)证明:AE⊥平面PAD
(2)取AB=2,若H为PD上的动点,EH与平面PAD所成最大角的正切值为$\frac{\sqrt{6}}{2}$时,求VP-AEH的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.双曲线C:$\frac{{x}^{2}}{16}$$-\frac{{y}^{2}}{4}$=1的、左右焦点分别为F1,F2,M(1,4),点F1,F2分别为△MAB的边MA,MB的中点,点N在第一象限内,线段MN的中点恰好在双曲线C上,则|AN|-|BN|的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}中,a1=2,an=an-1-$\frac{1}{2}$(n≥2),则数列{an}的前12项和为-9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.平罗中学高二(9)班数学兴趣小组有4名男生和3名女生共7人,现将他们排成一队.
(1)若男生和男生互不相邻,女生和女生互不相邻,共有多少种不同排法?
(2)问3个女生相邻的概率是多少?

查看答案和解析>>

同步练习册答案