精英家教网 > 高中数学 > 题目详情
6.已知数列{an}中,a1=2,an=an-1-$\frac{1}{2}$(n≥2),则数列{an}的前12项和为-9.

分析 由题意可得数列{an}为首项2,公差d为-$\frac{1}{2}$的等差数列,再由等差数列的前n项和的公式,计算即可得到所求和.

解答 解:a1=2,an=an-1-$\frac{1}{2}$(n≥2),
即有an-an-1=-$\frac{1}{2}$(n≥2),
可得数列{an}为首项2,公差d为-$\frac{1}{2}$的等差数列,
则数列{an}的前12项和为12×2+$\frac{1}{2}$×12×11×(-$\frac{1}{2}$)
=-9.
故答案为:-9.

点评 本题考查等差数列的定义和求和公式的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知椭圆$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1\;(a>b>0)$的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x+y+1=0与以椭圆C的上焦点为圆心,以椭圆的长半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设P为椭圆C上一点,若过点M(0,2)的直线l与椭圆C相交于不同的两点S和T,满足$\overrightarrow{OS}+\overrightarrow{OT}=t\overrightarrow{OP}$(O为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,给出的3个三角形图案中圆的个数依次构成一个数列的前3项,则这个数列的一个通项公式是(  )
A.2n+1B.3nC.$\frac{{n}^{2}+2n}{2}$D.$\frac{{n}^{2}+3n+2}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线的方程为$\frac{{x}^{2}}{3}$-y2=1,则该双曲线的渐近线方程是(  )
A.y=±xB.y=±3xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a>0,b>0,若2是4a和2b的等比中项,则$\frac{2}{a}$+$\frac{1}{b}$的最小值为(  )
A.$\sqrt{2}$B.4C.$\frac{9}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在单调递减的等差数列{an}中,若a3=1,a2a4=$\frac{3}{4}$,则a1=(  )
A.1B.2C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设等差数列{an}的公差d>0,且a1>0,记Tn=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$.
(1)用a1、d分别表示T1、T2、T3,并猜想Tn
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,且a1=1,Sn+1-2Sn=1(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=n+$\frac{n}{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知|$\overrightarrow{a}$|=4,$\overrightarrow{e}$为单位向量,当$\overrightarrow{a}$、$\overrightarrow{e}$的夹角为$\frac{2π}{3}$时,$\overrightarrow{a}$+$\overrightarrow{e}$在$\overrightarrow{a}$-$\overrightarrow{e}$上的投影为$\frac{5\sqrt{21}}{7}$.

查看答案和解析>>

同步练习册答案