精英家教网 > 高中数学 > 题目详情
18.设等差数列{an}的公差d>0,且a1>0,记Tn=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$.
(1)用a1、d分别表示T1、T2、T3,并猜想Tn
(2)用数学归纳法证明你的猜想.

分析 (1)利用裂项法计算T1、T2、T3,并猜想结论;
(2)先验证n=1,再假设n=k猜想成立,推导n=k+1猜想成立.

解答 解:(1)T1=$\frac{1}{{a}_{1}{a}_{2}}$=$\frac{1}{{a}_{1}({a}_{1}+d)}$;
T2=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$=$\frac{1}{d}$($\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}}$)+$\frac{1}{d}$($\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$)=$\frac{1}{d}$($\frac{1}{{a}_{1}}-\frac{1}{{a}_{3}}$)=$\frac{2}{{a}_{1}{a}_{3}}$=$\frac{2}{{a}_{1}({a}_{1}+2d)}$;
T3=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$=$\frac{1}{d}$($\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}}$)+$\frac{1}{d}$($\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$)+$\frac{1}{d}$($\frac{1}{{a}_{3}}$-$\frac{1}{{a}_{4}}$)=$\frac{1}{d}$($\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{4}}$)=$\frac{3}{{a}_{1}{a}_{4}}$=$\frac{3}{{a}_{1}({a}_{1}+3d)}$;
由此可猜想Tn=$\frac{n}{{a}_{1}({a}_{1}+nd)}$.
(2)证明:①当n=1时,T1=$\frac{1}{{a}_{1}({a}_{1}+d)}$,结论成立,
②假设当n=k时(k∈N*)时结论成立,
即Tk=$\frac{k}{{a}_{1}({a}_{1}+kd)}$,
则当n=k+1时,Tk+1=Tk+$\frac{1}{{a}_{k+1}{a}_{k+2}}$=$\frac{k}{{a}_{1}({a}_{1}+kd)}$+$\frac{1}{({a}_{1}+kd)[{a}_{1}+(k+1)d]}$=$\frac{k[{a}_{1}+(k+1)d]+{a}_{1}}{{a}_{1}({a}_{1}+kd)[{a}_{1}+(k+1)d]}$
=$\frac{({a}_{1}+kd)(k+1)}{{a}_{1}({a}_{1}+kd)[{a}_{1}+(k+1)d]}$=$\frac{k+1}{{a}_{1}[{a}_{1}+(k+1)d]}$.
即n=k+1时,结论成立.
由①②可知,Tn=$\frac{1}{{a}_{1}({a}_{1}+nd)}$对于一切n∈N*恒成立.

点评 本题考查了数学归纳法证明,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且经过点M(-3,-1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:x-y-2=0与椭圆C交于A,B两点,点P为椭圆C上一动点,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.双曲线C:$\frac{{x}^{2}}{16}$$-\frac{{y}^{2}}{4}$=1的、左右焦点分别为F1,F2,M(1,4),点F1,F2分别为△MAB的边MA,MB的中点,点N在第一象限内,线段MN的中点恰好在双曲线C上,则|AN|-|BN|的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}中,a1=2,an=an-1-$\frac{1}{2}$(n≥2),则数列{an}的前12项和为-9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(-2)=2,则f(2018)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知{an}为等差数列,a1+a2=a3=6,则a2等于(  )
A.2B.$\frac{5}{2}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足(x-4)2+(y-8)2=4,则$\frac{y}{x-4}$的取值范围是(-∞,-$\sqrt{15}$]∪[$\sqrt{15}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.平罗中学高二(9)班数学兴趣小组有4名男生和3名女生共7人,现将他们排成一队.
(1)若男生和男生互不相邻,女生和女生互不相邻,共有多少种不同排法?
(2)问3个女生相邻的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=-x3+ax2+bx+c(a,b,c∈R)在区间(-∞,0)内单调递减,在区间(0,1)内单调递增,且f(x)在R上有三个零点,1是其中一个零点.
(1)求f(3)的取值范围;
(2)若直线l:y=x-1在曲线C:x=f(x)的上方部分所对应的x的集合(-∞,1),试求实数a的取值范围.

查看答案和解析>>

同步练习册答案