精英家教网 > 高中数学 > 题目详情
3.已知{an}为等差数列,a1+a2=a3=6,则a2等于(  )
A.2B.$\frac{5}{2}$C.3D.4

分析 利用等差数列通项公式列出方程组,由此能求出a2

解答 解:∵{an}为等差数列,a1+a2=a3=6,
∴$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}+d=6}\\{{a}_{1}+2d=6}\end{array}\right.$,
解得a1=2,d=2,
∴a2=a1+d=2+2=4.
故选:D.

点评 本题考查等差数列的第二项的求法,考查等差数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知定义在R上的函数$f(x)=\left\{\begin{array}{l}{x^2}+2,x∈[0,1)\\ 2-{x^2},x∈[-1,0)\end{array}\right.$且f(x+2)=f(x).若方程f(x)-kx-2=0有三个不相等的实数根,则实数k的取值范围是(-1,-$\frac{1}{3}$)∪($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线的方程为$\frac{{x}^{2}}{3}$-y2=1,则该双曲线的渐近线方程是(  )
A.y=±xB.y=±3xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在单调递减的等差数列{an}中,若a3=1,a2a4=$\frac{3}{4}$,则a1=(  )
A.1B.2C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设等差数列{an}的公差d>0,且a1>0,记Tn=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$.
(1)用a1、d分别表示T1、T2、T3,并猜想Tn
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设向量$\overrightarrow{AB}$=(-1,1),$\overrightarrow{AC}$=(1,5),则向量$\overrightarrow{BC}$在$\overrightarrow{AB}$方向上的投影为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,且a1=1,Sn+1-2Sn=1(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=n+$\frac{n}{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=4,|$\overrightarrow{c}$|=2$\sqrt{3}$,且$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$,则$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$•$\overrightarrow{c}$+$\overrightarrow{c}$•$\overrightarrow{a}$=-$\frac{31}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=alnx+$\frac{2x+1}{x}$(a∈R)在x=2处的切线与直线4x+y=0垂直.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若存在x∈(1,+∞),使f(x)$<\frac{m(x-1)+2}{x}$(m∈Z)成立,求m的最小值.

查看答案和解析>>

同步练习册答案