精英家教网 > 高中数学 > 题目详情
6.已知数列{an}的前n项和为Sn,且a1=1,Sn+1-2Sn=1(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=n+$\frac{n}{{a}_{n}}$,求数列{bn}的前n项和Tn

分析 (1)由题意可得Sn+1+1=2(Sn+1),即有数列{Sn+1}是以S1+1=2,2为公比的等比数列,运用等比数列的通项公式和数列的递推式,可得所求通项公式;
(2)求出bn=n+$\frac{n}{{a}_{n}}$=n+n•($\frac{1}{2}$)n-1,运用数列的求和方法:分组求和和错位相减法,结合等差数列和等比数列的求和公式,化简计算即可得到所求和.

解答 解:(1)a1=1,Sn+1-2Sn=1,
即为Sn+1+1=2(Sn+1),
即有数列{Sn+1}是以S1+1=2,2为公比的等比数列,
则Sn+1=2•2n-1=2n
即Sn=2n-1,n∈N*,
当n≥2时,an=Sn-Sn-1=2n-1-(2n-1-1)=2n-1
上式对n=1也成立,
则数列{an}的通项公式为an=2n-1,n∈N*;
(2)bn=n+$\frac{n}{{a}_{n}}$=n+n•($\frac{1}{2}$)n-1
前n项和Tn=(1+2+3+…+n)+[1•1+2•($\frac{1}{2}$)+3•($\frac{1}{2}$)2+…+n•($\frac{1}{2}$)n-1],
设Mn=1•1+2•($\frac{1}{2}$)+3•($\frac{1}{2}$)2+…+n•($\frac{1}{2}$)n-1
$\frac{1}{2}$Mn=1•$\frac{1}{2}$+2•($\frac{1}{2}$)2+3•($\frac{1}{2}$)3+…+n•($\frac{1}{2}$)n
相减可得,$\frac{1}{2}$Mn=1+$\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-1-n•($\frac{1}{2}$)n
=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n
化简可得Mn=4-(n+2)•($\frac{1}{2}$)n-1
则Tn=$\frac{1}{2}$n(n+1)+4-(n+2)•($\frac{1}{2}$)n-1

点评 本题考查数列的通项的求法,注意运用构造数列法,考查等比数列的通项公式和求和公式的运用,考查数列数列的求和方法:分组求和和错位相减法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数g(x)=x2+bx+c,且关于x的不等式g(x)<0的解集为(-$\frac{7}{9}$,0).
(1)求实数b,c的值;
(2)若不等式0≤g(x)-$\frac{{2}^{n}}{({2}^{n}+1)^{2}}$<$\frac{2}{9}$对于任意n∈N*恒成立,求满足条件的实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}中,a1=2,an=an-1-$\frac{1}{2}$(n≥2),则数列{an}的前12项和为-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知{an}为等差数列,a1+a2=a3=6,则a2等于(  )
A.2B.$\frac{5}{2}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足(x-4)2+(y-8)2=4,则$\frac{y}{x-4}$的取值范围是(-∞,-$\sqrt{15}$]∪[$\sqrt{15}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知平面直角坐标系内二定点A(-1,0),B(2,0),动点P到B的距离是到定点A的距离的两倍,记动点P的轨迹为曲线E,过点Q(-2,1)的动直线l与曲线E交于点C,D,当|CD|取最小值时,直线l的方程为y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.平罗中学高二(9)班数学兴趣小组有4名男生和3名女生共7人,现将他们排成一队.
(1)若男生和男生互不相邻,女生和女生互不相邻,共有多少种不同排法?
(2)问3个女生相邻的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z是方程(2-i)z=i的解,且z对应的向量$\overrightarrow{OA}$与向量$\overrightarrow{OB}$关于实轴对称,则向量$\overrightarrow{OB}$对应的复数为(  )
A.-$\frac{1}{5}$+$\frac{2}{5}$iB.-$\frac{1}{5}$-$\frac{2}{5}$iC.-$\frac{1}{3}$+$\frac{2}{3}$iD.-$\frac{1}{3}$-$\frac{2}{3}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-ax+1(a∈R).
(1)若函数f(x)的图象在x=1处的切线l垂直于直线y=x,求实数a的值及直线l的方程;
(2)求函数f(x)的单调区间;
(3)若x>1,求证:lnx<x-1.

查看答案和解析>>

同步练习册答案