分析 (1)将b的值代入f(x)中,将x=1代入得到a,c的关系,求出导函数的两个根即函数的两个极值点,利用函数的单调性,判断出极值点与单调区间的关系,列出不等式求出f(3)的范围即可;
(2)问题转化为(x-1)[x2+(1-a)x+2-a]>0的解集是(-∞,1),根据x的范围得出矛盾,得到a的值不存在.
解答 解:(1)∵f(x)=-x3+ax2+bx+c,
∴f'(x)=-3x2+2ax+b,
∵f(x)在(-∞,0)上是减函数,在(0,1)上是增函数,
∴当x=0时,f(x)取到极小值,即f'(0)=0
∴b=0.
∴f(x)=-x3+ax2+c
∵1是函数f(x)的一个零点,即f(1)=0,
∴c=1-a,
∵f'(x)=-3x2+2ax=0的两个根分别为x1=0,x2=$\frac{2a}{3}$,
又∵f(x)在(0,1)上是增函数,且函数f(x)在R上有三个零点,
∴x2=$\frac{2a}{3}$>1,即a>$\frac{3}{2}$,
∴f(3)=8a-26>-14;
(2)由直线l:y=x-1在曲线C:y=f(x)的上方的部分对应的x的集合为(-∞,1),
得x-1>-x3+ax2+1-a,即(x-1)[x2+(1-a)x+2-a]>0的解集是(-∞,1),
∵x<1时,x-1<0,
而x<1时,x2+(1-a)x+2-a必存在正值,
故(x-1)[x2+(1-a)x+2-a]>0的解集不可能是(-∞,1),
故a无解.
点评 本题考查了函数的单调性、零点问题,考查导数的应用以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{27}{18}$ | B. | $\frac{29}{18}$ | C. | $\frac{17}{18}$ | D. | $\frac{13}{18}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1) | B. | (-1,+∞) | C. | (-1,0) | D. | (-∞,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com