精英家教网 > 高中数学 > 题目详情
20.已知集合P={x|x2-2x≥0},Q={x||x-1|≤2},则P∩Q={x|-1≤x≤0或2≤x≤3},(∁RP)∪Q={x|-1≤x≤3}.

分析 根据不等式的性质求出集合的等价条件,结合集合的基本运算进行求解即可.

解答 解:P={x|x2-2x≥0}={x|x≥2或x≤0},Q={x||x-1|≤2}={x|-1≤x≤3},
则P∩Q={x|-1≤x≤0或2≤x≤3},
RP={x|0<x<2},则(∁RP)∪Q={x|-1≤x≤3},
故答案为:{x|-1≤x≤0或2≤x≤3},{x|-1≤x≤3}.

点评 本题主要考查集合的基本运算,根据条件求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.复数$z=\frac{{{i^{2017}}}}{{1+{i^{2015}}}}$,则z在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\sqrt{3}sin2x+2{cos^2}x+1$.
(I)求函数f(x)的单调递增区间和对称中心;
(II)设△ABC内角A,B,C的对边分别为a,b,c,且$c=\sqrt{3},f(C)=3$,若向量$\overrightarrow m=(sinA,-1)$与向量$\overrightarrow n=(2,sinB)$垂直,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC中,D是BC的中点,$\overrightarrow{AE}=2\overrightarrow{EB}$,AD和CE相交于点P,设$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$.
( I)用$\overrightarrow a$,$\overrightarrow b$表示向量$\overrightarrow{AD}$,$\overrightarrow{CE}$;
( II)若$\overrightarrow{AP}=λ\overrightarrow{AD}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.y=sin2x的图象向左平移$\frac{π}{4}$个单位,再向上平移1个单位,所得图象的函数解析式是(  )
A.y=2cos2xB.y=2sin2xC.y=1+sin(2x+$\frac{π}{4}$)D.y=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知递增数列{an}满足a1=1,|an+1-an|=pn,n∈N*.且a1,2a2,3a3成等差数列,则实数P的值为(  )
A.0B.$\frac{1}{3}$C.$\frac{1}{3}$或0D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=logax+1(a>0且a≠1)的图象恒过定点A,若点A在直线$\frac{x}{m}$+$\frac{y}{n}$-4=0(m>0,n>0)上,则$\frac{1}{m}$+$\frac{1}{n}$=4;m+2n的最小值为$\frac{2\sqrt{2}+3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以下四个命题中,真命题是(  )
A.?x∈(0,π),sinx=tanx
B.条件p:$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,条件q:$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$,则p是q的必要不充分条件
C.“?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0”
D.?θ∈R,函数f(x)=sin(2x+θ)都不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数的f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}≤φ≤\frac{π}{2}$)图象关于直线x=$\frac{π}{3}$对称,且图象上相邻两个最高点的距离为π,若$f(\frac{α}{2})=\frac{{\sqrt{3}}}{4}$(0<α<π),则$sin(\frac{5π}{3}-α)$=(  )
A.$-\frac{{\sqrt{15}}}{4}$B.$\frac{{\sqrt{15}}}{4}$C.$±\frac{{\sqrt{15}}}{4}$D.$-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

同步练习册答案