精英家教网 > 高中数学 > 题目详情
12.函数y=logax+1(a>0且a≠1)的图象恒过定点A,若点A在直线$\frac{x}{m}$+$\frac{y}{n}$-4=0(m>0,n>0)上,则$\frac{1}{m}$+$\frac{1}{n}$=4;m+2n的最小值为$\frac{2\sqrt{2}+3}{4}$.

分析 由题意,求出A的坐标,代入直线$\frac{x}{m}$+$\frac{y}{n}$-4=0,可以基本不等式的性质求解即可.

解答 解:函数y=logax+1(a>0且a≠1)的图象恒过定点A,
即x=1,y=1,
∴A的坐标为(1,1).
将A代入直线$\frac{x}{m}$+$\frac{y}{n}$-4=0.
可得:$\frac{1}{m}+\frac{1}{n}=4$.
得:$\frac{1}{4m}+\frac{1}{4n}=1$.
那么:(m+2n)($\frac{1}{4n}+\frac{1}{4m}$)=$\frac{m}{4n}+\frac{n}{2m}+\frac{1}{2}+\frac{1}{4}$≥2$\sqrt{\frac{m}{4n}×\frac{n}{2m}}+\frac{3}{4}$=$\frac{2\sqrt{2}+3}{4}$.
(当且仅当m=$\sqrt{2}$n=$\frac{1+\sqrt{2}}{4}$时,取等号)
∴m+2n的最小值为$\frac{2\sqrt{2}+3}{4}$.
故答案为:4,$\frac{2\sqrt{2}+3}{4}$.

点评 本题考查了对数函数的恒过定点的求法和基本不等式的运用.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.用配方法解下列方程,配方正确的是(  )
A.2y2-4y-4=0可化为(y-1)2=4B.x2-2x-9=0可化为(x-1)2=8
C.x2+8x-9=0可化为(x+4)2=16D.x2-4x=0可化为(x-2)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得$\sum_{i=1}^{10}$xi=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$x${\;}_{i}^{2}$=720.附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.
(1)求家庭的月储蓄y对月收入x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知集合P={x|x2-2x≥0},Q={x||x-1|≤2},则P∩Q={x|-1≤x≤0或2≤x≤3},(∁RP)∪Q={x|-1≤x≤3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式x2-2ax-8a2<0的解集为(x1,x2),且x2-x1=15,则a=$\frac{5}{2}$或$-\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.以直角坐标系的原点为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为:$\left\{\begin{array}{l}x=t+4\\ y=kt\end{array}\right.$(t是参数,k∈R),圆C的极坐标方程为:p=4cosθ,则直线l与圆C的位置关系为相交.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=ex+a,x∈[m,n]的值域为[2m,2n],则a的取值范围是(-∞,-2+2ln2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知两点A(4,5),B(-2,3),则$|\overrightarrow{AB}|$=2$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若关于x的不等式|2x-1|-|x-1|≤log2a有解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案