精英家教网 > 高中数学 > 题目详情
2.若关于x的不等式|2x-1|-|x-1|≤log2a有解,求实数a的取值范围.

分析 令f(x)=|2x-1|-|x-1|,零点分段去绝对值,求解f(x)的最小值,可得实数a的取值范围.

解答 解:由题意,令f(x)=|2x-1|-|x-1|,有题意可知:$log_2^{\;}a≥f{(x)_{min}}$.
又∵$f(x)=\left\{{\begin{array}{l}{-x,x≤\frac{1}{2}}\\{3x-2,\frac{1}{2}<x<1}\\{x,x≥1}\end{array}}\right.$
∴$f{(x)_{min}}=-\frac{1}{2}$.
∴${log_2}a≥-\frac{1}{2}$
解得:$a≥\frac{{\sqrt{2}}}{2}$.
∴实数a的取值范围是[$\frac{\sqrt{2}}{2}$,+∞).

点评 本题考查了含有绝对值的不等式的解法,零点分段去绝对值时解题的关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数y=logax+1(a>0且a≠1)的图象恒过定点A,若点A在直线$\frac{x}{m}$+$\frac{y}{n}$-4=0(m>0,n>0)上,则$\frac{1}{m}$+$\frac{1}{n}$=4;m+2n的最小值为$\frac{2\sqrt{2}+3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知tanθ=2,则2sin2θ+sinθcosθ=(  )
A.2B.$\frac{5}{6}$C.-$\frac{3}{4}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数的f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}≤φ≤\frac{π}{2}$)图象关于直线x=$\frac{π}{3}$对称,且图象上相邻两个最高点的距离为π,若$f(\frac{α}{2})=\frac{{\sqrt{3}}}{4}$(0<α<π),则$sin(\frac{5π}{3}-α)$=(  )
A.$-\frac{{\sqrt{15}}}{4}$B.$\frac{{\sqrt{15}}}{4}$C.$±\frac{{\sqrt{15}}}{4}$D.$-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知不等式|x-a|+|2x-3|>$\frac{a^2}{2}$.
(1)已知a=2,求不等式的解集;
(2)已知不等式的解集为R,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有(  )
A.20种B.15种C.10种D.4种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.
(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?
(2)每名学生都被随机分配到其中的一个公园,设X,Y分别表示5名学生分配到王城公园和牡丹公园的人数,记ξ=|X-Y|,求随机变量ξ的分布列和数学期望E(ξ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ln(x+1)+$\frac{2a}{x+a}({a>0})$.
(I)讨论函数f(x)在(0,+∞)上的单调性;
(II)设函数f(x)存在两个极值点,并记作x1,x2,若f(x1)+f(x2)>4,求正数a的取值范围;
(III)求证:当a=1时,f(x)>$\frac{1}{{{e^{x+1}}}}+\frac{1}{x+1}$(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-ax有极值1,这里e是自然对数的底数.
(1)求实数a的值,并确定1是极大值还是极小值;
(2)若当x∈[0,+∞)时,f(x)≥mxln(x+1)+1恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案