精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=ex-ax有极值1,这里e是自然对数的底数.
(1)求实数a的值,并确定1是极大值还是极小值;
(2)若当x∈[0,+∞)时,f(x)≥mxln(x+1)+1恒成立,求实数m的取值范围.

分析 (1)f′(x)=ex-a,根据函数f(x)=ex-ax有极值1,可得存在x0,使得f′(x0)=${e}^{{x}_{0}}$-a=0,f(x0)=${e}^{{x}_{0}}$-ax0=1,解得x0,a.即可判断出结论.
(2)当x∈[0,+∞)时,f(x)≥mxln(x+1)+1恒成立?ex-x-1-mxln(x+1)≥0恒成立.令g(x)=ex-(x+1),x≥0.g(0)=0.利用导数研究其单调性可得:ex≥x+1.
①若mxln(x+1)+x+1≤x+1,则ex-x-1-mxln(x+1)≥0恒成立.可得:m≤0.
②m>0时,x≥0时,mxln(x+1)+x+1≤ex.令F(x)=mxln(x+1)+x+1-ex,(x≥0),F(0)=0.
由F(x)≤0,可得mxln(x+1)≤ex-x-1,x>0时,化为:m≤$\frac{{e}^{x}-x-1}{xln(x+1)}$.下面证明:$\frac{1}{2}$≤$\frac{{e}^{x}-x-1}{xln(x+1)}$.利用导数研究其单调性即可得出.

解答 解:(1)f′(x)=ex-a,∵函数f(x)=ex-ax有极值1,
∴存在x0,使得f′(x0)=${e}^{{x}_{0}}$-a=0,f(x0)=${e}^{{x}_{0}}$-ax0=1,
解得x0=0,a=1.
∴f′(x)=ex-1,可知:0是极小值点,因此1是极小值.
(2)当x∈[0,+∞)时,f(x)≥mxln(x+1)+1恒成立?ex-x-1-mxln(x+1)≥0恒成立.
令g(x)=ex-(x+1),x≥0.g(0)=0.
则g′(x)=ex-1≥0,
∴x≥0时,函数g(x)单调递增,因此g(x)≥g(0)=0,因此ex≥x+1.
①若mxln(x+1)+x+1≤x+1,则ex-x-1-mxln(x+1)≥0恒成立.
则mxln(x+1)≤0,可得:m≤0.
∴m≤0时,x≥0时,f(x)≥mxln(x+1)+1恒成立.
②m>0时,x≥0时,mxln(x+1)+x+1≤ex
令F(x)=mxln(x+1)+x+1-ex,(x≥0),F(0)=0.
由F(x)≤0,可得mxln(x+1)≤ex-x-1,
x=0时,化为0≤0,恒成立,m∈R.
x>0时,化为:m≤$\frac{{e}^{x}-x-1}{xln(x+1)}$.
下面证明:$\frac{1}{2}$≤$\frac{{e}^{x}-x-1}{xln(x+1)}$.
令h(x)=2ex-2x-2-xln(x+1),h(0)=0.
h′(x)=2ex-2-ln(x+1)-$\frac{x}{x+1}$.h′(0)=0.
h(x)=2ex-$\frac{1}{x+1}$-$\frac{1}{(x+1)^{2}}$≥h(0)=0,
∴h′(x)≥0.
∴函数h(x)在[0,+∞)上单调递增,∴h(x)≥h(0)=0.
因此:$\frac{1}{2}$≤$\frac{{e}^{x}-x-1}{xln(x+1)}$成立,并且$\frac{1}{2}$是其最小值.
∴m≤$\frac{1}{2}$.
综上可得:实数m的取值范围是$(-∞,\frac{1}{2}]$.

点评 本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.若关于x的不等式|2x-1|-|x-1|≤log2a有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的上、下焦点分别为F1,F2,上焦点F1到直线 4x+3y+12=0的距离为3,椭圆C的离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆C的标准方程
(Ⅱ)设过椭圆C的上顶点A的直线l与椭圆交于点B(B不在y轴上),垂直于l的直线与l交于点M,与x轴交于点H,若$\overrightarrow{{F_1}B}•\overrightarrow{{F_1}H}$=0,且|${\overrightarrow{MO}}$|=|${\overrightarrow{MA}}$|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-lnx+x2-x+m(m∈R).
(Ⅰ)求函数y=f(x)的零点的个数;
(Ⅱ)当m=0时,令函数g(x)=f(x)+$\frac{a-2}{2}{x^2}$+x,a∈R,求函数y=g(x)在x∈[1,e]上的值域,其中e=2.71828…为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有两对夫妇各带一个小孩到动物园游玩,购票后排成一队依次入园.为安全起见,首尾一定要排两位爸爸,另外两个小孩要排在一起,则这六人的入园顺序排法种数为24.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系xOy中,以坐标原点为圆心且与直线mx-y-2m+1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(  )
A.x2+y2=5B.x2+y2=3C.x2+y2=9D.x2+y2=7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,D为棱BC的中点,AB=AC,BC=$\sqrt{2}A{A_1}$,求证:
(1)A1C∥平面ADB1
(2)BC1⊥平面ADB1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点分别为F1、F2.左、右顶点分别为A、B,虚轴的上、下端点分别为C、D.若线段BC与双曲线的渐近线的交点为E,且∠BF1E=∠CF1E,则双曲线的离心率为(  )
A.1+$\sqrt{6}$B.1+$\sqrt{5}$C.1+$\sqrt{3}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将一张边长为12cm的正方形纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)所示放置.如果正四棱锥的主视图是等边三角形,如图(3)所示,则正四棱锥的体积是(  )
A.$\frac{32}{3}$$\sqrt{6}$cm3B.$\frac{64}{3}$$\sqrt{6}$cm3C.$\frac{32}{3}$$\sqrt{2}$cm3D.$\frac{64}{3}$$\sqrt{2}$cm3

查看答案和解析>>

同步练习册答案