精英家教网 > 高中数学 > 题目详情
17.在平面直角坐标系xOy中,以坐标原点为圆心且与直线mx-y-2m+1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(  )
A.x2+y2=5B.x2+y2=3C.x2+y2=9D.x2+y2=7

分析 由题意画出图形,可得当圆与直线mx-y-2m+1=0切于P(2,1)时,圆的半径最大,求出圆的半径可得半径最大的圆的标准方程.

解答 解:直线mx-y-2m+1=0过定点P(2,1),如图,

∴当圆与直线mx-y-2m+1=0切于P时,圆的半径最大为$\sqrt{5}$.
此时圆的标准方程为x2+y2=5.
故选:A.

点评 本题考查直线与圆位置关系的应用,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有(  )
A.20种B.15种C.10种D.4种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线与x轴所成的夹角为30°,且双曲线的焦距为4$\sqrt{2}$.
(1)求椭圆C的方程;
(2)过右焦点F的直线l,交椭圆于A、B两点,记△AOF的面积为S1,△BOF的面积为S2,当S1=2S2时,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,问另一个小孩是男孩的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-ax有极值1,这里e是自然对数的底数.
(1)求实数a的值,并确定1是极大值还是极小值;
(2)若当x∈[0,+∞)时,f(x)≥mxln(x+1)+1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果双曲线C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$的渐近线与抛物线y=x2+$\frac{1}{4}$相切,则C的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一块长为20cm,宽为12cm的矩形铁皮,将其四个角截去一个边长为a的小正方形,然后折成一个无盖的盒子,写出这个盒子的体积V与边长x的函数关系式,并讨论这个函数的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在数列{an}中,对任意n∈N*,都有an+1-2an=0,则$\frac{{2{a_1}+{a_2}}}{{2{a_3}+{a_4}}}$等于(  )
A.2B.4C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.三进制数2022(3)化为六进制数为abc(6),则a+b+c=7.

查看答案和解析>>

同步练习册答案