精英家教网 > 高中数学 > 题目详情
5.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,问另一个小孩是男孩的概率是$\frac{2}{3}$.

分析 求在事件A发生的情况下,事件B发生的概率,即求P(B|A),由条件概率公式求解即可.

解答 解:一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}.
 已知这个家庭有一个是女孩的有:{男,女),(女,男),(女,女)},
另一个小孩是男孩的有{(男,女),(女,男 ).
故已知这个家庭有一个是女孩,问另一个小孩是男孩的概率是$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题主要考查条件概率的计算公式,等可能事件的概率的求解公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}\frac{{{2^x}+2}}{2},x≤1\\|ln({x-1})|,x>1\end{array}$,则函数F(x)=f[f(x)]-af(x)-$\frac{3}{2}$的零点个数是4个时,下列选项是a的取值范围的子集的是(  )
A.$({\frac{1}{2},+∞})∪\left\{{\frac{ln2}{2}}\right\}$B.$[{\frac{ln2}{2},+∞})$C.$({0,\frac{1}{2}})∪\left\{{\frac{ln2}{2}}\right\}$D.$[{\frac{ln2}{2},\frac{1}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{-{2}^{x},x≥0}\\{lo{g}_{4}|x|,x<0}\end{array}\right.$,则f(f(2))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若幂函数f(x)的图象经过点A(4,2),则它在A点处的切线方程为x-4y+4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-lnx+x2-x+m(m∈R).
(Ⅰ)求函数y=f(x)的零点的个数;
(Ⅱ)当m=0时,令函数g(x)=f(x)+$\frac{a-2}{2}{x^2}$+x,a∈R,求函数y=g(x)在x∈[1,e]上的值域,其中e=2.71828…为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD的底面是等腰梯形,AD∥BC,BC=2AD,O为BD的中点.
(1)求证:CD∥平面POA;
(2)若PO⊥底面ABCD,CD⊥PB,AD=PO=2,求二面角A-PD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系xOy中,以坐标原点为圆心且与直线mx-y-2m+1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(  )
A.x2+y2=5B.x2+y2=3C.x2+y2=9D.x2+y2=7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|$\frac{x-1}{x+2}$≤0},B={x|x<-2},则A∪(∁UB)=(  )
A.[-2,+∞)B.(-2,+∞)C.[-2,1]D.(-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am、an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,则$\frac{1}{m}$+$\frac{4}{n}$的最小值为(  )
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{25}{6}$D.$\frac{4}{3}$

查看答案和解析>>

同步练习册答案