精英家教网 > 高中数学 > 题目详情
8.已知集合A={x|$\frac{x-1}{x+2}$≤0},B={x|x<-2},则A∪(∁UB)=(  )
A.[-2,+∞)B.(-2,+∞)C.[-2,1]D.(-2,1]

分析 根据不等式的性质求出集合的等价条件,结合集合的基本运算进行求解即可.

解答 解:A={x|$\frac{x-1}{x+2}$≤0}={x|-2<x≤1},B={x|x<-2},
则∁UB={x|x≥-2},
则A∪(∁UB)={x|x≥-2},
故选:A

点评 本题主要考查集合的基本运算,根据条件求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面中,最长棱的长度是(  )
A.$2\sqrt{5}$B.$4\sqrt{2}$C.6D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,问另一个小孩是男孩的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果双曲线C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$的渐近线与抛物线y=x2+$\frac{1}{4}$相切,则C的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一块长为20cm,宽为12cm的矩形铁皮,将其四个角截去一个边长为a的小正方形,然后折成一个无盖的盒子,写出这个盒子的体积V与边长x的函数关系式,并讨论这个函数的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正六棱锥S-ABCDEF的底面边长和高均为1,则异面直线SC与DE所成角的大小为450..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在数列{an}中,对任意n∈N*,都有an+1-2an=0,则$\frac{{2{a_1}+{a_2}}}{{2{a_3}+{a_4}}}$等于(  )
A.2B.4C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在一次数学测验后,班级学委王明对选答题的选题情况进行了统计,如下表:(单位:人)
几何证明选讲坐标系与参数方程不等式选讲合计
男同学124622
女同学081220
合计12121842
(Ⅰ)在统计结果中,如果把《几何证明选讲》和《坐标系与参数方程》称为几何类,把《不等式选讲》称为代数类,我们可以得到如下2×2列联表:(单位:人)
几何类代数类总计
男同学16622
女同学81220
总计241842
根据以下列联表,在犯错误不超过多少的情况下认为选做“几何类”或“代数类”与性别有关.
(Ⅱ)在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知学委王明和两名数学科代表三人都在选做《不等式选讲》的同学中.
①求在这名班级学委被选中的条件下,两名数学科代表也被选中的概率;
②记抽到数学科代表的人数为X,求X的分布列及数学期望E(X).
下面临界值表仅供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.i+i2+i3+…+i2017=i.

查看答案和解析>>

同步练习册答案