| A. | $\frac{3}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{25}{6}$ | D. | $\frac{4}{3}$ |
分析 设正项等比数列{an}的公比为q>0,由满足:a7=a6+2a5,可得q2=q+2,解得q=2.根据存在两项am、an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,可得$\sqrt{{a}_{1}^{2}{q}^{m+n-2}}$=4a1,m+n=6.对m,n分类讨论即可得出.
解答 解:设正项等比数列{an}的公比为q>0,∵满足:a7=a6+2a5,∴q2=q+2,解得q=2.
∵存在两项am、an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,∴$\sqrt{{a}_{1}^{2}{q}^{m+n-2}}$=4a1,∴m+n=6.
m,n的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1).
则$\frac{1}{m}$+$\frac{4}{n}$的最小值为$\frac{1}{2}+\frac{4}{4}$=$\frac{3}{2}$.
故选:A.
点评 本题考查了等比数列的通项公式与性质、分类讨论方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 几何证明选讲 | 坐标系与参数方程 | 不等式选讲 | 合计 | |
| 男同学 | 12 | 4 | 6 | 22 |
| 女同学 | 0 | 8 | 12 | 20 |
| 合计 | 12 | 12 | 18 | 42 |
| 几何类 | 代数类 | 总计 | |
| 男同学 | 16 | 6 | 22 |
| 女同学 | 8 | 12 | 20 |
| 总计 | 24 | 18 | 42 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com