精英家教网 > 高中数学 > 题目详情
8.已知椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线与x轴所成的夹角为30°,且双曲线的焦距为4$\sqrt{2}$.
(1)求椭圆C的方程;
(2)过右焦点F的直线l,交椭圆于A、B两点,记△AOF的面积为S1,△BOF的面积为S2,当S1=2S2时,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值.

分析 (1)由双曲线的渐近线方程及斜率公式,即可求得a2=3b2,c=2$\sqrt{2}$,即a2+b2=8,即可求得a和b的值,求得椭圆方程;
(2)设直线l的方程,代入椭圆方程,利用韦达定理及y1=-2y2,即可求得t的值,分别求得y1y2,x1x2,利用向量数量积的坐标运算,即可求得$\overrightarrow{OA}$•$\overrightarrow{OB}$的值.

解答 解:(1)由一条渐近线与x轴所成的夹角为30°,则$\frac{b}{a}$=tan30°=$\frac{\sqrt{3}}{3}$,即a2=3b2
由2c=4$\sqrt{2}$.c=2$\sqrt{2}$,则a2+b2=8,
解得:a2=8,b2=2,
∴椭圆的标准方程:$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$;
(2)由(1)可知:F(2,0),直线AB的方程:x=ty+2,A(x1,y1),B(x2,y2),
$\left\{\begin{array}{l}{x=ty+2}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,整理得:(t2+3)y2+4ty-2=0,
y1+y2=-$\frac{4t}{{t}^{2}+3}$,y1y2=-$\frac{2}{{t}^{2}+3}$,
由S1=2S2时,则y1=-2y2时,解得:t2=$\frac{1}{5}$,
将t2=$\frac{1}{5}$,代入y1y2=-$\frac{5}{8}$,
x1x2=(ty1+2)(ty2+2)=t2y1y2+2t(y1+y2)+4,
=$\frac{27}{8}$,
由$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=$\frac{27}{8}$-$\frac{5}{8}$=$\frac{11}{4}$,得:
$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{11}{4}$.

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,向量数量积的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|x>0},集合B={x|2≤x≤3},则A∩B=(  )
A.[3,+∞)B.[2,3]C.(0,2]∪[3,+∞)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.二项式($\sqrt{x}$-$\frac{1}{2x}$)n的展开式中所有项的二项式系数之和是64,则展开式中的常数项为$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{-{2}^{x},x≥0}\\{lo{g}_{4}|x|,x<0}\end{array}\right.$,则f(f(2))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的上、下焦点分别为F1,F2,上焦点F1到直线 4x+3y+12=0的距离为3,椭圆C的离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆C的标准方程
(Ⅱ)设过椭圆C的上顶点A的直线l与椭圆交于点B(B不在y轴上),垂直于l的直线与l交于点M,与x轴交于点H,若$\overrightarrow{{F_1}B}•\overrightarrow{{F_1}H}$=0,且|${\overrightarrow{MO}}$|=|${\overrightarrow{MA}}$|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若幂函数f(x)的图象经过点A(4,2),则它在A点处的切线方程为x-4y+4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-lnx+x2-x+m(m∈R).
(Ⅰ)求函数y=f(x)的零点的个数;
(Ⅱ)当m=0时,令函数g(x)=f(x)+$\frac{a-2}{2}{x^2}$+x,a∈R,求函数y=g(x)在x∈[1,e]上的值域,其中e=2.71828…为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系xOy中,以坐标原点为圆心且与直线mx-y-2m+1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(  )
A.x2+y2=5B.x2+y2=3C.x2+y2=9D.x2+y2=7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知${(\sqrt{x}-\frac{2}{x^2})^n}(n∈{N^*})$的展开式中第五项的系数与第三项的系数的比是10:1.
(1)求展开式中各项系数的和;
(2)求展开式中含x${\;}^{\frac{3}{2}}$的项;
(3)求展开式中系数最大的项和二项式系数最大的项.

查看答案和解析>>

同步练习册答案