分析 (1)利用通项公式求出第五项的系数与第三项的系数,他们的比为10:1,可得n的值,记录赋值法x=1可得展开式中各项系数的和.
(2)利用通项公式,令x的指数等于$\frac{3}{2}$,求通项中的k,可得答案.
(3)设展开式中的第k项,第k+1项,第k+2项的系数绝对值分别为$C_8^{k-1}•{2^{k-1}}$,$C_8^k•{2^k}$,$C_8^{k+1}•{2^{k+1}}$,若第k+1项的系数绝对值最大,求出k的范围,讨论系数正负情况,可得系数最大值.根据n=8,可得第5项二项式系数最大.
解答 解:由题意知,第五项系数为$C_n^4{(-2)^4}$,第三项的系数为$C_n^2{(-2)^2}$,则有$\frac{{C_n^4{{(-2)}^4}}}{{C_n^2{{(-2)}^2}}}=\frac{10}{1}$,
化简得n2-5n-24=0,解得n=8或n=-3(舍去).
(1)令x=1得各项系数的和为(1-2)8=1.
(2)通项公式Tk+1=$C_8^k{(\sqrt{x})^{8-k}}•{(-\frac{2}{x^2})^k}$=$C_8^k{(-2)^k}•$${x}^{\frac{1}{2}(8-k)}•{x}^{-2k}$.
令$\frac{8-k}{2}$-2k=$\frac{3}{2}$,则k=1,
可得:${C}_{8}^{1}•(\sqrt{x})^{8-1}(-\frac{2}{{x}^{2}})^{1}$=${-2•C}_{8}^{1}•{x}^{\frac{7}{2}}•{x}^{-2}$=$-2{•C}_{8}^{1}•{x}^{\frac{3}{2}}$.
故展开式中含x${\;}^{\frac{3}{2}}$的项为-16x${\;}^{\frac{3}{2}}$.
(3)设展开式中的第k项,第k+1项,第k+2项的系数绝对值分别为
$C_8^{k-1}•{2^{k-1}}$,$C_8^k•{2^k}$,$C_8^{k+1}•{2^{k+1}}$,
若第k+1项的系数绝对值最大,则$\left\{\begin{array}{l}C_8^{k-1}•{2^{k-1}}≤C_8^k•{2^k}\\ C_8^{k+1}•{2^{k+1}}≤C_8^k•{2^k}\end{array}\right.$解得5≤k≤6.
又T6的系数为负,
∴系数最大的项为T7=1792x-11.
由n=8知第5项二项式系数最大,
此时T5=1120x-6.
点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,体现了转化的数学思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 几何证明选讲 | 坐标系与参数方程 | 不等式选讲 | 合计 | |
| 男同学 | 12 | 4 | 6 | 22 |
| 女同学 | 0 | 8 | 12 | 20 |
| 合计 | 12 | 12 | 18 | 42 |
| 几何类 | 代数类 | 总计 | |
| 男同学 | 16 | 6 | 22 |
| 女同学 | 8 | 12 | 20 |
| 总计 | 24 | 18 | 42 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com