精英家教网 > 高中数学 > 题目详情
14.第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.
(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?
(2)每名学生都被随机分配到其中的一个公园,设X,Y分别表示5名学生分配到王城公园和牡丹公园的人数,记ξ=|X-Y|,求随机变量ξ的分布列和数学期望E(ξ)

分析 (1)由题意可得:共有2$({∁}_{2}^{2}{∁}_{2}^{1}•{∁}_{1}^{1}+{∁}_{2}^{2}{∁}_{2}^{2}{∁}_{1}^{1})$种不同的分配方案.
(2)对于两个公园分配人数分别为:0,5;1,4;2,3;3,2;4,1;5,0.可得ξ=|X-Y|的取值分别为:1,3,5.于是P(ξ=1)=$\frac{2{∁}_{5}^{2}{∁}_{3}^{3}}{{2}^{5}}$,P(ξ=3)=$\frac{2{∁}_{5}^{1}{∁}_{4}^{4}}{{2}^{5}}$,P(ξ=5)=$\frac{2{∁}_{5}^{5}}{{2}^{5}}$.

解答 解:(1)学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有2$({∁}_{2}^{2}{∁}_{2}^{1}•{∁}_{1}^{1}+{∁}_{2}^{2}{∁}_{2}^{2}{∁}_{1}^{1})$=6种不同的分配方案.
(2)对于两个公园分配人数分别为:0,5;1,4;2,3;3,2;4,1;5,0.
∴ξ=|X-Y|的取值分别为:1,3,5.
∴P(ξ=1)=$\frac{2{∁}_{5}^{2}{∁}_{3}^{3}}{{2}^{5}}$=$\frac{20}{32}$=$\frac{5}{8}$,P(ξ=3)=$\frac{2{∁}_{5}^{1}{∁}_{4}^{4}}{{2}^{5}}$=$\frac{10}{32}$=$\frac{5}{16}$,P(ξ=5)=$\frac{2{∁}_{5}^{5}}{{2}^{5}}$=$\frac{2}{32}$=$\frac{1}{16}$.
可得ξ分布列:

 ξ 1 3 5
 P $\frac{5}{8}$ $\frac{5}{16}$ $\frac{1}{16}$
∴Eξ=1×$\frac{5}{8}$+2×$\frac{5}{16}$+3×$\frac{1}{16}$=$\frac{15}{8}$.

点评 本题考查了随机变量的分布列及其数学期望、组合数的计算公式、分类讨论方法、古典概率计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=ex+a,x∈[m,n]的值域为[2m,2n],则a的取值范围是(-∞,-2+2ln2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,BC=5,AC=8,C=60°,则$\overrightarrow{BC}•\overrightarrow{CA}$=(  )
A.20B.-20C.$20\sqrt{3}$D.$-20\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若关于x的不等式|2x-1|-|x-1|≤log2a有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\left\{\begin{array}{l}{{x}^{3},0≤x≤1}\\{x,x>1}\end{array}\right.$,则定积分${∫}_{0}^{2}$f(x)dx=$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.二项式($\sqrt{x}$-$\frac{1}{2x}$)n的展开式中所有项的二项式系数之和是64,则展开式中的常数项为$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.从6种不同的作物种子中选出4种放入4个不同的瓶子中展出,如果甲、乙两种种子不能放入1号瓶内,那么不同的放法种数共有240.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的上、下焦点分别为F1,F2,上焦点F1到直线 4x+3y+12=0的距离为3,椭圆C的离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆C的标准方程
(Ⅱ)设过椭圆C的上顶点A的直线l与椭圆交于点B(B不在y轴上),垂直于l的直线与l交于点M,与x轴交于点H,若$\overrightarrow{{F_1}B}•\overrightarrow{{F_1}H}$=0,且|${\overrightarrow{MO}}$|=|${\overrightarrow{MA}}$|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,D为棱BC的中点,AB=AC,BC=$\sqrt{2}A{A_1}$,求证:
(1)A1C∥平面ADB1
(2)BC1⊥平面ADB1

查看答案和解析>>

同步练习册答案