已知:如右图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.求证:(1)△ABC≌△DCB (2)DE·DC=AE·BD.
(1)根据梯形为等腰梯形推断出∠ABC=∠DCB,同时根据AB=CD,BC=CB,证明出△ABC≌△DCB.
(2)根据(1)中△ABC≌△DCB推断出∠ACB=∠DBC,同时根据AD∥BC和ED∥AC推断出∠EDA=∠DBC,∠EAD=∠DCB,进而根据相似三角形判定定理推断出△ADE∽△CBD,进而根据相似三角形的性质求得DE:BD=AE:CD,推断出DE•DC=AE•BD.
解析试题分析:证明:(1) ∵四边形ABCD是等腰梯形,∴AC=DB
∵AB=DC,BC=CB,∴△ABC≌△BCD
(2)∵△ABC≌△BCD,∴∠ACB=∠DBC,∠ABC=∠DCB
∵AD∥BC,∴∠DAC=∠ACB,∠EAD=∠ABC
∵ED∥AC,∴∠EDA=∠DAC ∴∠EDA=∠DBC,∠EAD=∠DCB
∴△ADE∽△CBD ∴DE:BD=AE:CD, ∴DE·DC=AE·BD.
考点:相似三角形
点评:本题主要考查了相似三角形的判定.考查了学生对基础知识的熟练掌握.
科目:高中数学 来源: 题型:解答题
已知C点在⊙O直径BE的延长线上,CA切⊙O于A 点,CD是∠ACB的平分线且交AE于点F,交AB于点D
(1)求∠ADF的度数; (2)若AB=AC,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直线l与⊙O相切于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连结DB,且AD=DB.
(1)判断直线DB与⊙O的位置关系,并说明理由;
(2)若PB=BO,⊙O的半径为4cm,求AC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分10分)选修4-1:几何证明选讲
如图所示,已知与⊙相切,为切点,为割线,
弦,、相交于点,为上一点,且·.
(1)求证:;
(2)求证:·=·.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com