精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex+x,g(x)=ln x+x,h(x)=ln x-1的零点依次为a,b,c,则( )
A.a<b<c
B.c<b<a
C.c<a<b
D.b<a<c
【答案】分析:由条件可得 ea+a=0,lnb+b=0,lnc-1=0,由此可得结论.
解答:解:∵函数f(x)=ex+x,g(x)=ln x+x,h(x)=ln x-1的零点依次为a,b,c,
∴ea+a=0,lnb+b=0,lnc-1=0.
a<0,0<b<1,c=e>1,故有a<b<c,
故选A.
点评:本题考查函数零点的定义以及函数零点判定定理的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(cosx+sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn}.求证:数列{f(xn)}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区二模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•菏泽一模)已知函数f(x)=e|lnx|-|x-
1
x
|,则函数y=f(x+1)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[-π,+∞)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(x2+x+1).
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)在[-1,1]上的最值.

查看答案和解析>>

同步练习册答案