精英家教网 > 高中数学 > 题目详情
已知平面上两点M(-5,0)和N(5,0),若直线上存在点P使|PM|-|PN|=6,则称该直线为“单曲型直线”,下列直线中是“单曲型直线”的是(  )
①y=x+1;    ②y=2;   ③y=
4
3
x;   ④y=2x+1.
A、①③B、①②C、②③D、③④
考点:轨迹方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据双曲线的定义,可得点P的轨迹是以M、N为焦点,2a=6的双曲线,由此算出双曲线的方程为
x2
9
-
y2
16
=1
.再分别判断双曲线与四条直线的位置关系,可得只有①②的直线上存在点P满足B型直线的条件,由此可得答案.
解答: 解:∵点M(-5,0),N(5,0),点P使|PM|-|PN|=6,
∴点P的轨迹是以M、N为焦点,2a=6的双曲线
可得b2=c2-a2=52-32=16,双曲线的方程为
x2
9
-
y2
16
=1

∵双曲线的渐近线方程为y=±
4
3
x
∴直线y=
4
3
x与双曲线没有公共点,
直线y=2x+1经过点(0,1)斜率k>
4
3
,与双曲线也没有公共点
而直线y=x+1、与直线y=2都与双曲线
x2
9
-
y2
16
=1
有交点
因此,在y=x+1与y=2上存在点P使|PM|-|PN|=6,满足B型直线的条件
只有①②正确
故选:B
点评:本题给出“B型直线”的定义,判断几条直线是否为B型直线,着重考查了双曲线的定义标准方程、直线与双曲线的位置关系等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a,b满足4a2+b2+ab=1,则2a+b的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D、E分别是BC、AC的中点,F为AB上一点,且
AB
=4
AF
,若
AD
=x
AF
+y
AE
,则x+y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(
x
+1)=x+2
x
,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题,其中错误的是(  )
A、在△ABC中,若A>B,则sinA>sinB
B、在锐角△ABC中,sinA>cosB
C、把函数y=sin2x的图象沿x轴向左平移
π
4
个单位,可以得到函数y=cos2x的图象
D、函数y=sinωx+
3
cosωx(ω≠0)最小正周期为π的充要条件是ω=2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x+2
x-1
的单调减区间和图象的对称中心分别为(  )
A、(-∞,0),(0,+∞),(1,1)
B、(-∞,-1),(-1,+∞),(1,0)
C、(-∞,1),(1,+∞),(1,0)
D、(-∞,1),(1,+∞),(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数①y=
x
;②f(x)=
3x2-1
;③y=
1
x3
;④y=x2+2x;⑤y=x2+2|x|-1;⑥f(x)=
x2+1
x
为偶函数的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,若a1=1,a2=
1
2
2
an+1
=
1
an
+
1
an+2
(n∈N*),则该数列的通项公式为(  )
A、an=
1
n
B、an=
2
n+1
C、an=
2
n+2
D、an=
3
n

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x+2
x-6
的定义域、值域及图象的对称中心分别为
 

查看答案和解析>>

同步练习册答案