精英家教网 > 高中数学 > 题目详情
6.已知命题p:存在x∈R,使tan x=$\frac{\sqrt{2}}{2}$,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:
①命题“p且q”是真命题;
②命题“p且¬q”是假命题;
③命题“¬p或q”是真命题;
④命题“¬p或¬q”是假命题,
其中正确的是①②③④.

分析 分别判断出p,q的真假,从而判断出复合命题的真假即可.

解答 解:关于命题p:存在x∈R,使tan x=$\frac{\sqrt{2}}{2}$,是真命题,
命题q:x2-3x+2<0的解集是{x|1<x<2},是真命题,
故①命题“p且q”是真命题,正确;
②命题“p且¬q”是假命题,正确;
③命题“¬p或q”是真命题,正确;
④命题“¬p或¬q”是假命题,正确;
故答案为:①②③④.

点评 本题考查了符合命题的判断,考查三角函数以及不等式的解法,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.3个男生和2个女生站成一排拍照,两个女生必须站在一起,且不能站在两端,不同的站法数是(  )
A.12B.24C.6D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=cos(2x+$\frac{π}{2}$)的周期是(  )
A.$\frac{π}{2}$B.$\frac{3π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线y2=2px(p>0)的焦点为F,过点F且倾斜角为60°的直线与抛物线交于A、B两点(A点位于x轴上方),若△AOF的面积为3$\sqrt{3}$,则p=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,已知点S(0,3),SA,SB与圆C:x2+y2-my=0(m>0)和抛物线x2=-2py(p>0)都相切,切点分别为M,N和A,B,SA∥ON,则点A到抛物线准线的距离为(  )
A.4B.2$\sqrt{3}$C.3D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点A是抛物线y=$\frac{{x}^{2}}{2}$上的一个动点,过A作圆D:x2+(y-$\frac{1}{2}$)2=r2(r>0)的两条切线,它们分别切圆D于E,F两点.
(1)当r=$\frac{3}{2}$,A点坐标为(2,2)时,求两条切线的方程;
(2)对于给定的正数r,当A运动时,A总在圆D外部,直线EF都不通过的点构成一个区域,求这个区域的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5}.
(Ⅰ) 若a=-2,求A∩∁RB;   
(Ⅱ) 若A∪B=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|x2-2x-3≥0},B={x|m-2≤x≤m+2,m∈R}.
(1)求Z∩∁RA;
(2)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=kx+log9(9x+1)(k∈R)是偶函数.
(1)求k的值;
(2)若函数g(x)=log9(a•3x-$\frac{4}{3}$a)的图象与f(x)的图象有且只有一个公共点,求a的取值范围.

查看答案和解析>>

同步练习册答案