【题目】根据某电子商务平台的调查统计显示,参与调查的
位上网购物者的年龄情况如下图.
(1)已知
、
、
三个年龄段的上网购物者人数成等差数列,求
的值;
(2)该电子商务平台将年龄在
之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放
元的代金券,潜在消费人群每人发放
元的代金券.已经采用分层抽样的方式从参与调查的
位上网购物者中抽取了
人,现在要在这
人中随机抽取
人进行回访,求此三人获得代金券总和
的分布列与数学期望.
![]()
【答案】(1)
;(2)分布列略,186.
【解析】
试题分析:(1)由于五个组的频率之和等于1,即五个矩形的面积之和为1,即求得
的知;
(2)由已知高消费人群所占比例为
,潜在消费人群的比例为
,由分层抽样的性质知抽出的
人中,高消费人群有
人,潜在消费人群有
人,随机抽取的三人中代金券总和
可能的取值为:
,由离散随机变量概率公式列得分布列,继而求得数学期望.
试题解析:(1)由于五个组的频率之和等于1,故:
,
又因为
、
、
三个年龄段的上网购物者人数成等差数列
所以![]()
联立解出![]()
(3)由已知高消费人群所占比例为
,潜在消费人群的比例为![]()
由分层抽样的性质知抽出的
人中,高消费人群有
人,潜在消费人群有
人,
随机抽取的三人中代金券总和
可能的取值为:![]()
;![]()
;![]()
列表如下:
|
|
|
|
|
|
|
|
|
|
数学期望![]()
科目:高中数学 来源: 题型:
【题目】已知某中学联盟举行了一次“盟校质量调研考试”活动,为了解本次考试学生的某学科成绩情况,从中抽取部分学生的分数(满分为
分,得分取正整数,抽取学生的分数均在
之内)作为样本(样本容量为
)进行统计,按照
的分组作出频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在
的数据)
![]()
(Ⅰ)求样本容量
和频率分布直方图中的
的值;
(Ⅱ)在选取的样本中,从成绩在
分以上(含
分)的学生中随机抽取
名学生参加“省级学科基础知识竞赛”,求所抽取的
名学生中恰有一人得分在
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:在数列
中,若
为常数)则称
为“等方差数列”,下列是对“等方差数列”的有关判断( )
①若
是“等方差数列”,在数列
是等差数列;
②
是“等方差数列”;
③若
是“等方差数列”,则数列
为常)也是“等方差数列”;
④若
既是“等方差数列”又是等差数列,则该数列是常数数列.
其中正确命题的个数为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“石头、剪刀、布”是个广为流传的游戏,游戏时甲乙双方每次做“石头”“剪刀”“布”三种手势中的一种,规定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负须继续比赛,假设甲乙两人都是等可能地做这三种手势.
(1)列举一次比赛时两人做出手势的所有可能情况;
(2)求一次比赛甲取胜的概率,并说明“石头、剪刀、布”这个广为流传的游戏的公平性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,以
为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)已知点
,和平面内一点
,过点
任作直线
与椭圆
相交于
两点,设直线
的斜率分别为
,
,试求
满足的关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小明准备利用暑假时间去旅游,妈妈为小明提供四个景点,九寨沟、泰山、长白山、武夷山.小明决定用所学的数学知识制定一个方案来决定去哪个景点:(如图)曲线
和直线
交于点
.以
为起点,再从曲线
上任取两个点分别为终点得到两个向量,记这两个向量的数量积为
.若
去九寨沟;若
去泰山;若
去长白山;
去武夷山.
![]()
(1)若从
这六个点中任取两个点分别为终点得到两个向量,分别求小明去九寨沟的概率和不去泰山的概率;
(2)按上述方案,小明在曲线
上取点
作为向量的终点,则小明决定去武夷山.点
在曲线
上运动,若点
的坐标为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.
(1)摸出的3个球为白球的概率是多少?
(2)摸出的3个球为2个黄球1个白球的概率是多少?
(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)当
时,
在
上恒成立,求实数
的取值范围;
(2)当
时,若函数
在
上恰有两个不同的零点,求实数
的取值范围;
(3)是否存在常数
,使函数
和函数
在公共定义域上具有相同的单调性?若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com