精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=1﹣
(1)求函数f(x)的定义域和值域;
(2)试判断函数f(x)的奇偶性.

【答案】
(1)解:要使 f(x) 有意义,只要使2x+1≠0.由于对任意的 x都成立,即函数 的定义域为 R.

设y=f(x)=1﹣ ,2x>0,2x+1>1,0< <2,所以﹣1<1﹣ <1,所以函数的值域为(﹣1,1)


(2)解:对任意的 x∈R,则有﹣x∈R,.

∵f(﹣x)=1﹣ =1﹣ = =﹣f(x),

∴f(x) 为奇函数


【解析】(1)求使解析式有意义的x范围;并结合指数函数的值域求f(x)的值域.(2)利用奇偶函数的定义判断奇偶性.
【考点精析】关于本题考查的函数的定义域及其求法和函数的值域,需要了解求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2﹣2x﹣3=0的圆心坐标及半径分别为(
A.(﹣1,0)与
B.(1,0)与
C.(1,0)与2
D.(﹣1,0)与2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数是偶函数,并且在(0,+∞)上为增函数的为(
A.
B.
C.
D.y=﹣2x2+3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过15万元时,按销售利润的10%进行奖励;当销售利润超过15万元时,若超过部分为A万元,则超出部分按2log5(A+1)进行奖励,没超出部分仍按销售利润的10%进行奖励.记奖金总额为y(单位:万元),销售利润为x(单位:万元).
(1)写出该公司激励销售人员的奖励方案的函数表达式;
(2)如果业务员老张获得5.5万元的奖金,那么他的销售利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex-a+lnx。

(1)若a=1,求证:当x>1时,f(x)>2x-1

(2)若存在x0≥e,使f(x)<2lnx0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点关于原点对称,恰为抛物线 的焦点,点在抛物线上,且线段的中点恰在轴上,的面积为8.若抛物线上存在点使得,则实数的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.根据经验知道,若每台机器产生的次品数P(万件)与每台机器的日产量x(万件)(4≤x≤12)之间满足关系:P=0.1x2﹣3.2lnx+3,已知每生产1万件合格的元件可以盈利2万元,但每产生1万件装次品将亏损1万元.(利润=盈利﹣亏损) (I)试将该工厂每天生产这种元件所获得的利润y(万元)表示为x的函数;
(II)当每台机器的日产量x(万件)写为多少时所获得的利润最大,最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线y2=2px(p>0)的焦点的直线交抛物线于A、B两点,且|AB|= p,求AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 满足 ,若M为AB的中点,并且 ,则λ+μ的最大值是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案