精英家教网 > 高中数学 > 题目详情
已知函数,其中是自然对数的底数,
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图像与函数的图像有3个不同的交点,求实数的取值范围.
(1);(2)当时,的单调递减区间为,单调递增区间为;当时,的单调递减区间为;当时,的单调递减区间为,单调递增区间为;(3)

试题分析:(1) 利用导数的几何意义求切线的斜率,再求切点坐标,最后根据点斜式直线方程求切线方程;(2)利用导数的正负分析原函数的单调性,注意在解不等式时需要对参数的范围进行讨论;(3)根据单调性求函数的极值,根据其图像交点的个数确定两个函数极值的大小关系,然后解对应的不等式即可.
试题解析:(1)因为
所以
所以曲线在点处的切线斜率为
又因为
所以所求切线方程为,即              2分
(2)
①若,当时,;当时, 
所以的单调递减区间为
单调递增区间为                            4分
②若
所以的单调递减区间为                      5分
③若,当时,;当时,
所以的单调递减区间为
单调递增区间为                            7分
(3)由(2)知函数上单调递减,在单调递增,在上单调递减
所以处取得极小值,在处取得极大值    8分
,得
时,;当时,
所以上单调递增,在单调递减,在上单调递增
处取得极大值,在处取得极小值       10分
因为函数与函数的图象有3个不同的交点
所以,即,所以          12分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设f0(x)=cosx,f1(x)=f0′(x),…,fn+1(x)=fn′(x),x∈N,则f2011(x)=(  )
A.cosxB.-cosxC.sinxD.-sinx

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数(其中).
(1) 当时,求函数的单调区间;
(2) 当时,求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是函数的一个极值点.
(1)求的关系式(用表示),并求的单调区间;
(2)设在区间[0,4]上是增函数.若存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数若对任意x1∈[0,1],存在x2∈[1,2],使,求实数a的取值范围?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
xex
cosx
的导函数为f′(x),则f′(0)=(  )
A.0B.1C.
1
2
e
D.e

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.已知在R上可导的函数的图象如图所示,则不等式的解集为(     )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若的单调减区间是,求实数a的值;
(2)若函数在区间上都为单调函数且它们的单调性相同,求实数a的取值范围;
(3)a、b是函数的两个极值点,a<b,。求证:对任意的,不等式成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=在区间(1,+∞)上一定(  )
A.有最小值B.有最大值C.是减函数D.是增函数

查看答案和解析>>

同步练习册答案