| A. | (-∞,0) | B. | (-∞,e+2) | C. | (-∞,0)∪(e+2,+∞) | D. | (0,+∞) |
分析 构造函数g(x)=exf(x)-ex+1-2(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.
解答 解:设g(x)=exf(x)-ex+1-2(x∈R),
则g′(x)=exf(x)+exf′(x)-ex+1=ex[f(x)+f′(x)-e],
∵f(x)+f′(x)<e,
∴f(x)+f′(x)-e<0,
∴g′(x)<0,
∴y=g(x)在定义域上单调递减,
∵f(0)=e+2,
∴g(0)=e0f(0)-e-2=e+2-e-2=0,
∴g(x)>g(0),
∴x<0,
∴不等式的解集为(-∞,0)
故选:A.
点评 本题考查函数的导数与单调性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | $\sqrt{10}$ | C. | $\sqrt{5}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{1}{8}$) | B. | [$\frac{1}{8}$,1) | C. | [1,8) | D. | [8,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2{x}^{2}}{11}$+2y2=1 | B. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1 | C. | $\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{5}$=1 | D. | $\frac{{x}^{2}}{2}$+y2=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com