精英家教网 > 高中数学 > 题目详情
(理)已知圆F的方程是x2+y2-2y=0,抛物线的顶点在原点,焦点是圆心F,过F作倾斜角为a的直线l,l与抛物线和圆依次交于A、B、C、D四点(在直线z上,这四个点从左至右依次为A、B、C、D),若|AB|,|BC|,|CD|成等差数列,则α的值为(    )

A.+arctan                                  B.

C.arctan                                   D.arctan或π-arctan

答案:(理)D  圆半径为1,抛物线方程为x2=4y,

由AB+CD=2BC=4,

∴AF-1+DF-1=4,AF+DF=6

即(yA+1)+(yB+1)=6,∴yA+yB=4

设直线方程为y=kx+1.

代入x2=4y中得到y2-(2+4k2)y+1=0,

yA+yB=2+4k2=4,k=±

∴α=arctan或π-aretan

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网精英家教网(理)已知函数f(x)=
ln(2-x2)
|x+2|-2

(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)如图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列
{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.
(文)如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判
断点O、G、H是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年临沂一模理)(12分)

已知点M在椭圆(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点F。

(1)若圆M与y轴相交于A、B两点,且△ABM是边长为2的正三角形,求椭圆的方程;

(2)若点F(1,0),设过点F的直线l交椭圆于C、D两点,若直线l绕点F任意转动时恒有|OC|2+|OD|2<|CD|2,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年福建卷理)(12分)

已知椭圆的左焦点为F,O为坐标原点。

       (I)求过点O、F,并且与椭圆的左准线相切的圆的方程;

       (II)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围。

查看答案和解析>>

科目:高中数学 来源:2011年上海市普陀区高考数学二模试卷(文理合卷)(解析版) 题型:解答题

(理)已知函数
(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)如图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列
{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.
(文)如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判
断点O、G、H是否共线,并说明理由.

查看答案和解析>>

同步练习册答案