16£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=m+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.£¨t$Ϊ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=12£®Ö±Ïßl¹ýµã$£¨-2\sqrt{2}£¬0£©$£®
£¨¢ñ£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó|FA|•|FB|µÄÖµ£»
£¨¢ò£©ÇóÇúÏßCµÄÄÚ½Ó¾ØÐεÄÖܳ¤µÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÌâÒ⣬½«ÇúÏßCµÄ¼«×ø±ê·½³Ì±äÐÎΪ±ê×¼·½³Ì£¬ÓÉÖ±Ïß¹ýµÄµãµÄ×ø±ê¿ÉµÃmµÄÖµ£¬½«Ö±ÏߵIJÎÊý·½³ÌÓëÇúÏßCµÄ·½³ÌÁªÁ¢£¬¿ÉµÃt2-2t-2=0£¬ÓÉÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµ¼ÆËã¿ÉµÃ´ð°¸£»
£¨¢ò£©Ð´³öÇúÏßCµÄ²ÎÊý·½³Ì£¬·ÖÎö¿ÉµÃÒÔPΪ¶¥µãµÄÄÚ½Ó¾ØÐÎÖܳ¤l=$4¡Á£¨{2\sqrt{3}cos¦È+2sin¦È}£©=16sin£¨{¦È+\frac{¦Ð}{3}}£©£¨{0£¼¦È£¼\frac{¦Ð}{2}}£©$£¬ÓÉÕýÏÒº¯ÊýµÄÐÔÖÊ·ÖÎö¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨¢ñ£©¸ù¾ÝÌâÒ⣬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=12£¬
ÔòÆä±ê×¼·½³ÌΪ $\frac{x^2}{12}+\frac{y^2}{4}=1$£¬Æä×ó½¹µãΪ$£¨{-2\sqrt{2}£¬0}£©$£¬
Ö±Ïßl¹ýµã$£¨-2\sqrt{2}£¬0£©$£¬Æä²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=m+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.£¨t$Ϊ²ÎÊý£©£¬
Ôò$m=-2\sqrt{2}$£¬
½«Ö±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}x=-2\sqrt{2}+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$ÓëÇúÏßCµÄ·½³Ì $\frac{x^2}{12}+\frac{y^2}{4}=1$ÁªÁ¢£¬
µÃt2-2t-2=0£¬
Ôò|FA|•|FB|=|t1t2|=2£®
£¨¢ò£©ÓÉÇúÏßCµÄ·½³ÌΪ $\frac{x^2}{12}+\frac{y^2}{4}=1$£¬
¿ÉÉèÇúÏßCÉϵ͝µã$P£¨{2\sqrt{3}cos¦È£¬2sin¦È}£©$£¬
ÔòÒÔPΪ¶¥µãµÄÄÚ½Ó¾ØÐÎÖܳ¤l=$4¡Á£¨{2\sqrt{3}cos¦È+2sin¦È}£©=16sin£¨{¦È+\frac{¦Ð}{3}}£©£¨{0£¼¦È£¼\frac{¦Ð}{2}}£©$£¬
ÓÖÓÉsin£¨¦È+$\frac{¦Ð}{3}$£©¡Ü1£¬Ôòl¡Ü16£»
Òò´Ë¸ÃÄÚ½Ó¾ØÐÎÖܳ¤µÄ×î´óֵΪ16£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²¡¢Ö±Ïߵļ«×ø±ê·½³Ì¡¢²ÎÊý·½³Ì£¬Éæ¼°ÍÖÔ²ÓëÖ±ÏßµÄλÖùØÏµ£¬¹Ø¼üÊÇÇó³öÍÖÔ²¡¢Ö±ÏߵįÕͨ·½³Ì£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êý$f£¨x£©=2sin{£¨¦Øx+¦Õ£©_{\;}}£¨¦Ø£¾0£¬|¦Õ|¡Ü\frac{¦Ð}{2}£©$µÄͼÏóÈçͼ£®
£¨1£©¸ù¾Ýº¯ÊýµÄͼÏóÇó¸Ãº¯ÊýµÄ½âÎöʽ£®
£¨2£©Çóº¯Êýf£¨x£©ÔÚ$x¡Ê[0£¬\frac{¦Ð}{2}]$ÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ô²×¶ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ2£¨1+sin2¦È£©=2£®
£¨1£©ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖá·Ç¸º°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬¼°ÇúÏßCµÄ²ÎÊý·½³Ì£»
£¨2£©Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦È=\frac{¦Ð}{3}$£¨¦Ñ¡ÊR£©£¬ÈôÇúÏßCÉϵĵãMµ½Ö±ÏßlµÄ¾àÀë×î´ó£¬ÇóµãMµÄ×ø±ê£¨Ö±½Ç×ø±êºÍ¼«×ø±ê¾ù¿É£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª$sin¦Á=-\frac{{\sqrt{3}}}{2}$£¬Çócos¦Á¡¢tan¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ-4cos¦È=0£¬ÔÚÒÔ¼«µãOΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖáµÄÖ±½Ç×ø±êϵÖУ¬ÇúÏßDµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2\sqrt{3}cos¦Â\\ y=-2\sqrt{3}+2\sqrt{3}sin¦Â\end{array}\right.£¨¦Â$Ϊ²ÎÊý£©£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÇúÏßDµÄÆÕͨ·½³Ì£»
£¨2£©¹ýÔ­µãÇÒÇãб½ÇΪ¦Á£¨$\frac{¦Ð}{6}$¡Ü¦Á£¼$\frac{¦Ð}{2}$£©µÄÖ±ÏßlÓëÇúÏßC£¬D·Ö±ðÏཻÓÚM£¬NÁ½µã£¨M£¬NÒìÓÚÔ­µã£©£¬Çó|OM|+|ON|µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÉèµÈ²îÊýÁÐ{an}£¬ËüµÄǰ5ÏîµÄºÍΪ34£¬×îºó5ÏîµÄºÍΪ146£¬ËùÓÐÏîµÄºÍΪ234£¬Ôòa7=£¨¡¡¡¡£©
A£®2B£®8C£®16D£®18

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖª¶¯Ô²CºÍ¶¨Ô²C1£ºx2+£¨y-4£©2=64ÄÚÇУ¬ºÍ¶¨Ô²C2£ºx2+£¨y+4£©2=4ÍâÇУ¬ÉèC£¨x£¬y£©Ôò25x2+9y2=225£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®´Ó¼¯ºÏA={-2£¬1£¬2}ÖÐËæ»úѡȡһ¸öÊý¼ÇΪa£¬´Ó¼¯ºÏB={-2£¬1£¬2}ÖÐËæ»úѡȡһ¸öÊý¼ÇΪb£¬ÔòÖ±Ïßbx-y+a=0²»¾­¹ýµÚËÄÏóÏ޵ĸÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{2}{3}$C£®$\frac{2}{9}$D£®$\frac{4}{9}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒasinAcosC+csinAcosA=$\frac{1}{3}$c£¬DÊÇACµÄÖе㣬ÇÒcosB=$\frac{2\sqrt{5}}{5}$£¬BD=$\sqrt{26}$£®
£¨1£©Çó½ÇAµÄ´óС£»
£¨2£©Çó¡÷ABCµÄ×î¶Ì±ßµÄ±ß³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸