精英家教网 > 高中数学 > 题目详情
1.设等差数列{an},它的前5项的和为34,最后5项的和为146,所有项的和为234,则a7=(  )
A.2B.8C.16D.18

分析 设等差数列{an}的项数n,由等差数列的通项公式、前n项和公式列出方程求出n=13,从而${S}_{n}={S}_{13}=\frac{13}{2}({a}_{1}+{a}_{13})=13{a}_{7}$=234,由此能求出a7

解答 解:设等差数列{an}的项数n,
∵等差数列{an},它的前5项的和为34,最后5项的和为146,
所有项的和为234,
∴${S}_{n}=\frac{n}{2}×\frac{34+146}{5}$=234,
解得n=13,
∴${S}_{n}={S}_{13}=\frac{13}{2}({a}_{1}+{a}_{13})=13{a}_{7}$=234,
解得a7=18.
故选:D.

点评 本题考查等差数列的第7项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,输出的s值为(  )
A.2B.$\frac{5}{3}$C.$\frac{3}{2}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线C1的极坐标方程为ρsin2θ=cosθ,曲线C2的参数方程为$\left\{\begin{array}{l}{x=3-t}\\{y=1-t}\end{array}\right.$,(t为参数),以极点为原点、极轴为x轴正半轴、相同的单位长度建立直角坐标系,则曲线C1与曲线C2的交点个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=sinα}\end{array}\right.$(α为参数),以原点O为极点,x轴的正半轴为级轴,建立极坐标系,曲线C2的极坐标方程$ρsin(θ+\frac{π}{4})=4\sqrt{2}$;
(I)求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)设P为曲线C1上的动点,求点P到曲线C2上的距离的最小值的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l的参数方程为$\left\{\begin{array}{l}x=m+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12.直线l过点$(-2\sqrt{2},0)$.
(Ⅰ)若直线l与曲线C交于A,B两点,求|FA|•|FB|的值;
(Ⅱ)求曲线C的内接矩形的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.执行如图所示的程序框图.
(Ⅰ)当输入n=5时,写出输出的a的值;
(Ⅱ)当输入n=100时,写出输出的T的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方.观察图形的信息,回答下列问题:
(1)求分数在[120,130)内的频率,并补全这个频率分布直方图;
(2)估计本次考试的平均分及中位数;
(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段[120,130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.圆心在直线y=-4x上,且与直线x+y-1=0相切于点P(3,-2)的圆的标准方程为(x-1)2+(y+4)=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)=sin(x+φ)-2cosxsinφ的最小值为-1.

查看答案和解析>>

同步练习册答案